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Abstract 

This module is aimed to provide students beginning Linear Algebra an opportunity to play with 

advanced ideas of optimization and linear programming, typically reserved for a course in 

Optimization or Operations Research. The module builds upon introductory Linear Algebra ideas 

and implements code in MATLAB (using the Symbolic and Optimization Toolboxes) to allow 

students the ability to explore complex systems through framed examples and research questions. 

No previous knowledge of MATLAB or programming is required. It can be used as a classroom 

exercise or an out-of-class project. 

Introduction 

Students often inquire into the applications of the mathematical tools that they are learning in 

their courses. While all levels of mathematical theory have a beauty of their own and presenting 

applications is possible at various levels, glimpses into advanced techniques and courses can also 

be a motivating factor for students to continue their study. When students pose questions–

inspired by real-life questions or scenarios–very often their access to techniques to solve such 

questions are a semester or two out of reach. This module is aimed to provide students in Linear 

Algebra an opportunity to explore and work with the advanced ideas of optimization and linear 

programming without the fundamentals of the advanced classes. This experience is achieved by 

building upon skills from Algebra, Calculus regarding optimization, and a matrix representation 

of a system of equations. However, the material and exercises are presented packaged in a 

program, currently MATLAB, using their Live Script feature. The program is self-contained, so 

students do not require any programming experience to use the tool and play through the 

scenarios. This module also looks to extend students' knowledge from Calculus and Linear 

Algebra. The exercises were inspired by two research papers, Sparks & Abrahamson (2005) and 

Bosch (1996). But this module is meant to give students access to research projects and extended 

activities while being self-contained and appropriate for a student who may never be able to take 

an Optimization, Linear Programming, or Operations Research course. 



The module begins with a review of the concept of optimization through the lens of Calculus and 

provides some practical examples. Then we provide a brief refresher of Linear Algebra, 

specifically writing a system of equations as a matrix equation. Either of these sections could be 

skipped depending upon students' experience and desired scaffolding for the latter parts of the 

module. We provide a primer introducing MATLAB sufficient to work with the proposed 

problems in the module. Finally, students are introduced to the linear programming project. 

Students are encouraged to first mimic an example and then explore, discover, question, and 

extend the ideas. The themes presented are intended to be entertaining and engaging, but they are 

modeled from peer-reviewed, research papers. 

Tools for Optimization from Calculus and Linear Algebra 

 Calculus I 

First, we will start with the concept of optimization. While often associated with mathematics or 

related-fields, optimization is essentially the process of finding the best outcome and most 

effective use of resources to attain that outcome. The concept is familiar outside of a 

mathematics class, but perhaps first quantized for students in a Calculus 1 course. Students are 

introduced to the language of constraints (often the bounds of the problem) and an objective 

function (the outcome we desire to maximize or minimize). A common first example would be 

the garden example, where a rectangular garden is to be constructed using a rock 

wall/river/building as one side of the garden and wire fencing for the other three sides. Given 

100 ft of wire fencing, determine the dimensions that would create a garden of maximum area. 

What is the maximum area? The process to solve involves writing equations for a variable, 

substitution into the objective function, and techniques of differentiation. Upon exposure to other 

fields like economics, business, engineering, or through their own curiosity, students discover 

that there can be a multitude of constraints and a variety of variables that aren't always going to 

be able to be incorporated with the tools they have in a Calculus I course. Some of these tools are 

introduced later in Multivariable Calculus, but others much later or not at all. 

 Linear Algebra 

Upon adventuring into Linear Algebra, students are presented with solving systems of linear 

equations with a multitude of variables. Very often these linear equations may not be modeling a 



particular situation as the class is working on understanding the theory. Of course, early 

examples can be pulled from engineering, chemistry, and business, but systems are typically 

consistent and standardized. Students learn techniques of Gaussian elimination to turn systems of 

equations into equivalent systems that are more easily solved. This technique, often first taught 

by hand, helps students to identify pivots to do these elementary operations, and this process may 

be a bit mysterious when students consider that a computer can automate these operations. 

However, those skills allow us to manipulate more complicated systems in linear programming 

where the choices of pivots can benefit from human intervention in the problem. The techniques 

of solving a linear programming problem (including the Simplex method and tableau) are outside 

the scope of this module, as they are usually taught over several weeks or months within a class 

dedicated to optimization. However, we may find that a linear programming solution does not 

appear to exist in the boxed MATLAB program function. Sometimes we can see why there is no 

solution; however other times a re-writing can create a feasible solution. This re-writing process 

is outside the scope of this module. 

 Combining Skills to Pose a Linear Programming Example 

Similar to the Calculus I example, students quickly discover that there are restrictions to these 

new Linear Algebra skills and 1) we often cannot solve a system of linear equations and 2) very 

few questions posed require precise equality in the constraints and an inequality would better suit 

the expression of the question. The first of these two discoveries can lead to the conversations of 

the least-squares solution to a system of linear equations and minimizing the error, which is an 

optimization question. The second can start the conversation on linear programming, when 

constraints in the system are linear inequalities. 

One problem-solving technique typically not taught in Linear Algebra is the idea of using a 

matrix equation as part of posing and solving a Calculus I linear optimization problem that has a 

system of constraints. These problems are typically not taught because most optimization 

problems posed are non-linear, and there are better techniques in the Calculus series to tackle 

these problems. Below we provide a demonstration of this technique through an example 

illustrating how an objective function and a system of equalities are interpreted in a matrix. We 

will also solve the problem using the familiar Calculus I techniques to scaffold this new process.  

Note that this is just an example, starting somewhere familiar, before we investigate systems of 



linear inequalities the structure of linear programming. This example is a "standard" linear 

programming problem as the constraints are linear equalities and all the variables are assumed to 

be non-negative.  

Example 1: A rectangular package mailed through the postal service can have a maximum 

combined length, width, and height of 108 inches. The length is twice the width.  Find the 

dimensions of the package that maximize the volume. 

The objective is to maximize the volume of the box.  Let's let l be the length of the package, w be 

the width, and h be the height of the package. Then, 

Objective Function, V =lwh,  Constraint 1, l+w+h =108,  Constraint 2, l=2w or l-2w=0 

We will put this in the language of Linear Algebra and the common form of a linear 

programming problem with objective function z written as a linear combination of our variables 

and the matrix A containing our constraints. 

Maximize V=lwh 

Subject to: Ax=b and x>0 

We will let V be represented as a new variable z, l=x1, w=x2, h=x3, then above is equivalent to 

Maximizing z = x1x2x3 subject to                                            =            where x1, x2, x3>0. 

 

Solving the system gives the parametric solution x =                 for 0 < t < 108.   

 

We can now substitute into z = =      .. 

Solving z′=0 gives critical values of t = 108 or t = 36.  A second derivative test verifies 

dimensions 48in x 24in x 36in give the maximum volume.   

Certainly, this problem could be solved without using the language of linear algebra, but since 

our constraints were linear, we can solve the simultaneous equations using linear algebra. We 

modeled this example to prepare to use these skills for our linear optimization problem posed at 

the end. 



An Introduction to Linear Programming and MATLAB 

As mentioned in the introduction, we will not be covering the techniques associated with linear 

programming problems as these techniques are often taught over several weeks in a dedicated 

course. However, we will provide an introduction to posing these problems (encouraging 

students later to pose their own problems) and to using MATLAB's linprog solver. 

 Standard Form for a Linear Programming Problem in MATLAB 

A linear programming problem, like the optimization problem in the previous section, consists of 

an objective function and constraints.  Here, we can have multiple variables, but the objective 

function must be linear (and expressed as a dot product of two vectors) and the constraints a 

system of linear inequalities.  To use the linprog solver in MATLAB, we will use the following 

standard form of a problem. 

Minimize z=cTx 

Subject to: Ax ≤ b 

The MATLAB linprog solver requires we re-write our objective as a minimization problem and 

all our objectives as "less than or equal to." Note that maximizing z can be rephrased as 

minimizing -z.  The MATLAB solver can also do upper bounds, lower bounds, and constraints 

that are linear equalities; however, these will not be necessary for this simplification.  We will 

practice phrasing a problem in this form. 

Example 2: A company creates square boxes and triangular boxes.  Square boxes take 2 

minutes to make and sell for a profit of 4 dollars. Triangular boxes take 3 minutes to make 

and sell for a profit of 5 dollars. Their client wants at least 20 boxes and at least 8 of each 

type ready in under one hour. What is the best combination of square and triangular boxes 

to make so that the company makes the most profit from this client? 

The objective is to maximize the profit.  The constraints are the time and the minimal 

requirements of the order. Let x1 be the number of square boxes and x2 be the number of 

triangular boxes. We want to maximize profit = 4x1+5x2 subject to 2x1+3x2 ≤ 60, x1+x2 ≥ 20, 

x1 ≥ 8, and x2 ≥ 8.  To use the MATLAB solver, we must change these constraints into the 

standard form to minimize z=cTx and subject to Ax ≤ b.  First, instead of maximizing profit we 



will rename the objective and transform it to a minimization problem, so we will now minimize  

z=-4x1-5x2. We can write z as the dot product of a vector c and vector x. 

z= 

And we have four linear inequalities, we will write these in matrix form, but each must be written 

as "less than or equal to." Therefore, 2x1+3x2 ≤ 60, x1+x2 ≥ 20, x1 ≥ 8, and x2 ≥ 8 become 

2x1+3x2 ≤ 60, -x1-x2 ≤ -20, -x1 ≤ -8, and -x2 ≤ -8 or in matrix form: 

 

A=                    and b=.   

 

Once the question is posed, we'd add this information into the MATLAB program. Usually, a 

linear programming system in standard form would be written in tableau format and solved; 

however, as one can see in (Nichols & Christogaro, 2016; Vanderbei, 2001) these techniques are 

complex and nuanced to reach a solution and beyond the scope of this module. In lieu of 

teaching these techniques, we will introduce MATLAB's linprog solver. 

 MATLAB's Live Script and linprog 

We are utilizing MATLAB's Live Script to have a contained space for students to execute code. 

Packaged with this module (and featured in Appendix B) are the MATLAB codes. Below you'll 

find screenshots indicating the ways that we introduce variables in a system and set up linear 

programming problems. The example below is the first example of executable code in 

MATLAB1.mlx. 

 



Next, we will consider Example 2 with MATLAB. Note, introducing the symbolic variables is 

not necessary in this particular program, but we want to get into the habit in order to program 

more advanced activities. The following code is in MATLAB1.mlx. 

 

When we run the section, we see "Optimal solution found" and this solution can be found on the 

variable workspace.  In this case the solution is [18,8] which means the company should make 18 

square boxes and 8 triangular boxes.  There is much going on in the background of this program 

and one can see this by changing some of the constraints.  We encourage students to play with 

modifying the code.  We have copied the code into the next blank space on the Live Script for 

this purpose.  For example, modifying the minimal order to 5 of each box type creates the 

optimal solution [22.5,5] which is not possible. We cannot produce 22.5 square boxes, so since 

we are optimizing and have a time constraint, we will need to round down to say 22 square boxes 

and 5 triangular boxes.  Another example would be if we asked for a minimum of 30 boxes. In 

this case, there is "No feasible solution found."   



Before introducing the research project, we encourage readers to attempt the following example 

(solution at the end).  A space has been left for this exploration in the MATLAB1.mlx file. 

Exploration Question 1: A woman makes craft jewelry to sell at a seasonal craft show. She 

makes pins and earrings. Each pin takes her 1 hour to make and sells for a profit of 7 

dollars. The pairs of earrings take 2 hours to make, but she gets a profit of 20 dollars. She 

likes to have variety, so she wants to have at least as many pins as pairs of earrings. She 

also knows that she has approximately 40 hours for creating jewelry between now and the 

start of the show. The craft show vendor wants sellers to have more than 20 items on 

display at the beginning of the show.  

a) Assuming she sells all her inventory, how many pins and earring pairs should the 

woman make to maximize her profit? 

b) How could you change the profit margins to minimize the time needed to create the 

work? Maybe in 30 hours? Try changing these components in the system. 

Now that we have some basic examples onboard, we are going to describe the question and 

solution posed by Sparks & Abrahamson (2005), and then present a modification of the question 

for student exploration. 

An Exploration with Linear Programming 

The exploration in this module is loosely based and inspired by an exploration of the prediction 

of winners and ranking of the Cy Young Award winner from Sparks & Abrahamson (2005).  The 

Cy Young Award winner is the highest ranked pitcher by a vote, the electors each rank the best 

pitchers for the season and first, second, and third are assigned points. The paper uses 20 years of 

data for the top three point-learners (and ultimately the top winner) of the Cy Young Award.  

The authors point out that no one really knows what criteria each voter is using to determine 

their top vote for the award. The goal of the paper was to see if a system could be posed and 

solved to determine appropriate weights to five chosen criterion or parameters (they chose wins 

(W), losses (L), earned run average (ERA), team winning percentage (TWP), and strikeouts (K)) 

to predict the top three ranked pitchers each year.  The authors solved for the weights or 

constants in the system to determine what might be considered the most important parameters. 

Ultimately, the authors also used computational software to solve the system and even had to 



remove certain years to have a feasible system.  We will briefly present their findings and 

formulation before generalizing this ranking system in order to apply it to an exploration. 

We will modify and simplify their presentation to just a single year to present the ideas, but we 

recommend interested students to see how an additional subscript on the variables allows for 

multiple years to be programmed into the system. For each pitcher i, they calculated a total score, 

Si based on those five statistics mentioned above: wins (𝑝1), losses (𝑝2), earned run average (𝑝3), 

team winning percentage (𝑝4), and strikeouts (𝑝5). Those five statistics were normalized and 

reported for each pitcher.  For the weights to make sense, the authors scaled each statistic to be a 

number between 0 and 10 through linearization:  "These formulas are chosen with the idea in 

mind that a parameter value of zero should correspond to a performance of no value to voters, 

while a value of ten should be historic in the modern era of baseball." For  

example, for strikeouts, K, the scaling formula was                        . When the paper was written 

the record for most strikeouts in a season was 383, so a pitcher with this record would have a 

value of 10. The authors surmised that no pitcher with fewer than 50 strikeouts would even be 

considered. This step of normalizing the parameters is not necessary, but it does make the 

weights more meaningful, versus accounting for magnitude.   

The goal of the project was to be able to correctly predict the ranking of the pitchers based on 

their scores Si. So, if we consider the top three positions, we will want S1>S2>S3. The score is 

calculated as Si=x1p1i+x2p2i+x3p3i+x4p4i+x5p5i where the x = (x1 x2  x3  x4  x5) are the weights that 

will force our ordering/ranking above and pji is the normalized value of parameter j for pitcher i.  

This means we can formulate our constraints. 

1) S1>S2 implies (x1p11+x2p21+x3p31+x4p41+x5p51) - (x1p12+x2p22+x3p32+x4p42+x5p52) > 0 and 

S2>S3 implies (x1p12+x2p22+x3p32+x4p42+x5p52) - (x1p13+x2p23+x3p33+x4p43+x5p53) > 0. In 

preparation to use our MATLAB solver, we need to rephrase these as a linear system using "less 

than or equal to" and avoid the value of 0, so instead we will use a small value to limit the 

system. These systems can be written  

  

and 



 

We will further constrain the weights to force the score Si to be a convex combination, meaning 

that the weights sum to 1 (                  ) and we force the weights to be positive ( , k=1...5).  

When translating these constraints into our system, we will need to be clever to require equality. 

, k=1...5 

 

Finally, we have our constraints!  There must still be an objective function.  The authors chose to 

maximize the score of the winning pitcher each year.  Since we are only modeling one year, we 

will want to maximize S1, but again, for our system this will mean we want to minimize -S1. 

We are now prepared to state the standard form of the problem: 

Minimize z=-(x1p11+x2p21+x3p31+x4p41+x5p51) 

                                       Subject to:  

 

             , k=1…5 

 

Note, this system above technically models ANY ranking problem where you want to understand 

parameters that contribute to a ranking system.  Before we demonstrate some fun applications of 

this model, provide the code, and pose several exploratory examples for students to investigate, 

we will compare the 2022 Cy Young Award results with the weights from the paper that used the 

older data. The authors found the weights listed below on the left, indicating that the Wins was 

the highest weight.  The table on the right indicates the votes for 2022 Cy Young Awards with 

Justin Verlander chosen as the winner. 

 

 



 

We've calculated the five statistics for these three pitchers and present their vectors and scores 

using the weights from the 2005 paper (note, their data stopped before 2005). 

 

Therefore, using the 2005 weights, we'd expect: 

 

Justin does have the highest score! But we see that Sandy received the same number of votes as 

Justin in the Cy Young Award scored ranking. Sandy, in fact, scores overall less than Dylan. It is 

worth running our year to see what the weights would be. Let's recall our original standard form 

and then, in bold, the system with our values in the system. 

Minimize z=-(x1p11+x2p21+x3p31+x4p41+x5p51) 

z=-(6x1+7.333x2+8.215x3+8.086x4+4.054x5)   

 

             Subject to:      

x1(4.667-6) + x2(4-7.333) + x3(6.8-8.125) + x4(3.519-8.086) + x5(4.715-4.054) ≤ -0.001  

x1(-1.333) + x2(-3.333) + x3(-1.325) + x4(-4.567) + x5(0.661) ≤ -0.001   

and 

x1(4.667-4.667) + x2(4.667-4) + x3(7-6.8) + x4(6.358-3.519) + x5(5.315-4.715) ≤ -0.001 

x1(0) + x2(0.667) + x3(0.2) + x4(2.839) + x5(0.6) ≤ -0.001 

Justin Verlander* HOU 210 pts 

Sandy Alcantara MIA 210 pts 

Dylan Cease CWS 97 pts 



 

 

Notice that none of Sandy's five statistics were higher than Dylan's five statistics. Therefore, the 

second requirement (highlighted above) cannot be attained since we require all the weights to be 

positive. We can already see that we will not have a solution. The example, as written above, has 

been programmed in MATLAB2.mlx. You can see when the program returns "No feasible 

solutions found." 

Exploration Question 2: What parameter could be missing? Find some parameter that 

might allow Sandy to out-score Dylan in the 2022 rankings, then scale it linearly to a value 

between 0 and 10. A hint for linearization: look-up record highs and lows for top players in 

the rankings. See Spark & Abrahamson for more examples of linearization. Modify the 

code in the beginning of MATLAB2.mlx to add and remove parameters and determine and 

interpret the new weights. 

 Experimenting with Ranking Systems and Weights 

Perhaps baseball is not your thing–you aren't alone.  Above, we mentioned that the system can 

help develop an understanding of preferences for any ranking of "top three."  In Appendix A, 

there are three data sets each of the "top-three" (or more) in that category.  We also provide 

several parameters for each.  We will explore the first data set in this module, then leave the 

remaining sets and open questions for student exploration and experimentation.   

Ranker.com highlights that the Best Girl Scout cookies are 1) Thin Mints®, 2) Samoas®/ 

Caramel deLites, and 3) Tagalongs®/Peanut Butter Patties.  What parameters do voters use to 

determine their ranking?  Below is the table of several variables retrieved regarding these three 

cookies. 

Cookie 

Name Calories 

per serving 

Cookies 

per box 

Year first 

introduced 

Percentage 

of sales 

Grams of 

sugar per 

serving 

Gram of 

fat per 

serving 

Thin Mints® 160 32 1941 25 10 7 

Samoas® 150 15 1974 19 11 8 

Tagalongs® 140 15 1976 13 8 8 



We need not choose all six categories, but we will discuss normalizing all six parameters and 

then choosing three to four for our program.  Suppose America's favorite cookie is the Toll 

House chocolate chip cookie, and per serving: 180 calories, 14g sugar, and 8g fat. Clearly 

America's least favorite cookie is the Fig Newton, and per serving: 100 calories, 12g sugar, and 

2g fat. We can use these to get a sense of preferences. Other important facts are that the Girl 

Scouts started to commercially sell cookies in the 1930's; we will surmise a long-life span would 

indicate preference. The largest box of Girl Scout cookies has 44 cookies and the least has 14. 

And finally, there are 11 different types of cookies, so a popular cookie should have more than 

9.09% of the sales. For each, we will find a slope or appropriate scale, then modify each statistic.  

Notice that each scaling formula follows the Sparks and Abrahamson convention of returning a 

value between 0 and 10. 

Calories per serving: (cal-100)/8 
Cookies per box: 

 (cookies-10)/4 

Year Introduced:  

-(year-2022)/9 

Percentage of Sales: percent/4 
Grams of Sugar:  

10*(grams-6)/9 

Grams of Fat: grams  

(no scale needed!) 

Scaled Statistics: 

Cookie 

Name Calories 

per serving 

Cookies 

per box 

Year 

introduced 

Percentage 

of sales 

Grams of 

sugar per 

serving 

Grams of 

fat per 

serving 

Thin Mints® 7.5 8 9 6.25 4.44 7 

Samoas® 6.25 1.25 5.33 4.75 5.56 8 

Tagalongs® 5 1.25 5.11 3.25 2.22 8 

Trefoils® 7.5 7.5 7.89 1.75 1.11 7 

Upon scaling the statistics, we notice that Samoas® beats out Tagalongs® in every statistic, 

similar, this makes the opposite (and boring) situation that any linear combination will have a 

score for Samoas® higher than Tagalongs®, so we've added Trefoils®/Shortbread (ranked 4th!). 

Note, while it looks like the percentage of sales could decide it all, the 6th-ranked cookie, Do-si-

dos® (featured in the appendix data), has 16% of the shares of sales. We will use Calories (𝑝⋅1), 

Grams of fat (𝑝⋅2), Year introduced (𝑝⋅3), and Grams of sugar (𝑝⋅4) as our four variables to see if 

we can achieve this ranking.  



Like the model above, we want to minimize the negation of Thin Mints's® score, but we also 

must modify the original model to have four parameters instead of five and ranking four cookies 

instead of three pitchers.  An additional cookie adds one more constraint. 

Minimize z=-(x1p11+x2p21+x3p31+x4p41) 

z=-(7.5x1+7x2+9x3+4.44x4)   

             Subject to:      

 

 

x1(-1.25) + x2(1) + x3(-3.67) + x4(1.11) ≤ -0.001   

x1(-1.25) + x2(0) + x3(-0.22) + x4(-3.33) ≤ -0.001 

x1(2.5) + x2(-1) + x3(2.78) + x4(-1.11) ≤ -0.001 

    

 

This system is programmed into MATLAB2.mlx. The weights found are x1=0, x2=0.7357, 

x3=0.2643, and x4=0. The weight x3 implies that the time the cookies have around been is a 

factor, but a higher fat content holds more weight, as demonstrated in the weight x2. Our cookie 

scores are in the table below. Of course, these results are based on the parameters chosen. We 

can see we've clearly met this ranking.   

Cookie Name Score 

Thin Mints® 
7.5286 

Samoas® 7.2952 

Tagalongs® 7.23646667 

Trefoils® 7.23493333 

 



Exploration Question 3:  There were more possible parameters presented (and even more 

in Appendix A). Can you determine sets of parameters that provide feasible vs. infeasible 

linear programming problems? Can you explain why? Believe it or not, the 6th ranked 

cookie is the well-known Do-si-dos has the following parameters:  

 

Calories 

per serving 

Cookies 

per box 

Year 

introduced 

Percentage 

of sales 

Grams of 

sugar per 

serving 

Grams of 

fat per 

serving Score 

Do-si-dos® 7.5 2 7.89 6.25 4.44 7 7.235227 

Under the current weights, the cookie just sneaks into 4th position. Can you add this fifth 

cookie to the system? Can you find a feasible system that tells us about the weights of this 

ranking? Modify the code in MATLAB2.mlx. 

Exploration Question 4: Appendix A has several ranked data sets from a variety of polls or 

community-sourced websites with a variety of parameters to consider. Choose a data set 

and desired parameters to test for a solution. You will need to scale the statistics through 

your own research, explore different parameter combinations, and search for the limits of 

a feasible system while interpreting the resulting weights. 

 

 

 

 

 

 

 

 

 

 

 



Glossary (Definitions from Oxford Languages) 

Feasible Solution 

 a solution which satisfies all the constraints of an optimization problem.   

Linear Programming 

a mathematical technique for maximizing or minimizing a linear function of several 

variables, such as output or cost. 

Optimization 

 the action of making the best or most effective use of a situation or resource. 

Simplex Method and Tableau 

 a standard method of maximizing a linear function of several variables under several 

constraints on other linear functions. The tableau is used to perform row operations on the 

linear programming model as well as to check a solution for optimality. 
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Appendix A - Ranked Datasets for Linear Programming Ranking Exploration 

Best Girl Scout 

Cookies 

https://www.ranker.com/crowdranked-list/the-best-girl-scout-cookies  

accessed 12/30/22 

 

Calories per 

serving  

Cookies 

per 

serving 

Cookies 

per box 

Year first 

produced 

Percentage 

of sales 

Grams of 

sugar per 

serving 

Gram of 

fat per 

serving 

Thin Mints® 160 4 32 1941 25% 10 7 

Samoas® 150 2 15 1974 19% 11 8 

Tagalongs® 140 2 15 1976 13% 8 8 

Trefoils® 160 5 40 1951 7% 7 7 

Do Si Dos® 

(ranked 6th) 160 3 18 1951 16% 11 7 

 

Most Memorable 

Movie Sidekicks 

https://www.ranker.com/list/the-most-memorable-film-sidekicks-ever/marc-cuenco -

accessed 12/30/22 

 

# of movies 

they appear  

Total 

movies in 

series 

Worldwide 

Box Office 

(in millions) 

Total 

Budget (in 

millions) 

# of 

Oscars for 

the series 

Minutes 

of Screen 

Time 

Height 

(m) 

Samwise Gamgee 3 8 5,083.07 981 17 78 1.27 

Chewbacca 8 12 10,318.20 1,738 10 113 2.29 

Donkey 4 9 3,696.22 575 1 unknown 2.13 

R2D2 11 12 10,318.20 1,738 10 91 1.07 

Hermione Granger 8 13 9,586.20 1,734 0 205 1.65 

 

Best Fast Food 

Brands 

https://www.ranker.com/crowdranked-list/top-fast-food-brands  

-accessed 12/30/22 

 

# of 

locations 

Cost of most 

popular 

menu item 

US States 

with 

locations 

# of 

Dipping 

Sauces 

Profit in 

2021 (in 

millions) 

Social Media 

Followers (in 

millions) 

# of 

Tweets (in 

thousands) 

Chick-fil-a 2,732 2.11 47 8 16,700 11.674 217.9 

Five Guys 1,390 11.12 49 7 2,093 1.648 43.2 

Wendy's 5,938 2.55 50 9 11,111 14.432 222.6 

Taco Bell 7,002 3.44 50 7 12,600 15.123 806.3 

In-N-Out Burger 370 4.04 4 3 1,175 3.399 0.673 

https://www.ranker.com/crowdranked-list/the-best-girl-scout-cookies
https://www.ranker.com/list/the-most-memorable-film-sidekicks-ever/marc-cuenco
https://www.ranker.com/crowdranked-list/top-fast-food-brands


Appendix B - Code for MATLAB programs (MATLAB1.mlx, MATLAB2.mlx) 

MATLAB1.mlx 

Example 1  

syms x 

solve(2*x==28,x) 

Example 2  

%%First, we introduce the symbolic variables 

  

syms x1 x2 

  

%%Second, we enter the problem 

  

%% Vector c of constants for function to minimize 

c = [-4 -5]; 

  

%% Matrix A and vector b for constraints 

A = [2 3 

     -1 -1 

     -1 0 

     0 -1]; 

  

b = [60 

     -20 

    -8 

     -8]; 

  

%%Finally, we use linprog with these three components 

  

Solution = linprog(c,A,b); 

Code to modify and test: 

%%First, we introduce the symbolic variables 

  

syms x1 x2 

  

%%Second, we enter the problem 

  

%% Vector c of constants for function to minimize 

c = [-4 -5]; 



%% Matrix A and vector b for constraints 

A = [2 3 

     -1 -1 

     -1 0 

     0 -1]; 

  

b = [60 

     -20 

    -8 

     -8]; 

  

%%Finally, we use linprog with these three components 

  

Solution2 = linprog(c,A,b); 

MATLAB2.mlx 

Cy Young Award Exploration 

%%First, we introduce the symbolic variables 

  

syms x1 x2 x3 x4 x5 

  

%%Second, we enter the problem 

  

%% Vector c of constants for function to minimize 

cz = [-6 -7.333 -8.215 -8.086 -4.054]; 

  

%% Matrix A and vector b for constraints 

A = [-1.333 -3.333 -1.325 -4.567 0.661 

     0  0.667   0.2 2.839   0.06 

     -1 0 0 0 0 

     0 -1 0 0 0 

     0 0 -1 0 0 

     0 0 0 -1 0 

     0 0 0 0 -1 

     1 1 1 1 1 

     -1 -1 -1 -1 -1]; 

  

b = [-0.001 

     -0.001 

    0 

    0 

    0 



    0 

    0 

    1 

    -1]; 

  

%%Finally, we use linprog with these three components 

  

Solution = linprog(c,A,b); 

Girl Scout Cookie Exploration: 

%%First we introduce the symbolic variables 

  

syms x1 x2 x3 x4 

  

%%Second we enter the problem 

  

%% Vector c of constants for function to minimize 

c = [-7.5 -7 -9.22  -4.44]; 

  

%% Matrix A and vector b for constraints 

A = [-1.25 1 -3.67 1.11  

     -1.25  0   -0.22 -3.33 

     2.5  -1  2.78  -1.11 

     -1 0 0 0  

     0 -1 0 0  

     0 0 -1 0  

     0 0 0 -1  

     1 1 1 1  

     -1 -1 -1 -1 ]; 

  

b = [-0.001 

     -0.001 

     -0.001 

    0 

    0 

    0 

    0 

    1 

    -1]; 

 %%Finally, we use linprog with these three components 

  

Solution2 = linprog(c,A,b); 


