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Abstract

This module introduces undergraduates to the statistical field of time series through
a series of applications to energy-related examples. Topic 1 introduces the basic ter-
minology of time series and the concepts of smoothing, weighted and moving averages.
Topic 2 covers stationary series and introduces the reader to the autocorrelation func-
tion and the role it plays in building time series models. Topics 3 focuses on forecasting
using regression and autoregressive (AR) models. Topic 4 uses regression to estimate
solutions to a differential equation to model resource extraction. The class activities
and discussions throughout the module are designed to be in-class activities. Addi-
tional student activities are designed as additional homework that can be assigned by
the instructor.

Preliminary Material

Description

This module introduces upper level undergraduates to the basic concepts of time series
through a series of applications to energy-related examples. The module is organized into
four sections (Topics). Topic 1 introduces the basic terminology of time series as well as the
concepts weighted and moving averages and their application to the technique of smoothing.
Topic 2 introduces the reader to the autocorrelation function and the role it plays in building
time series models. The autocorrelation function is also used to describe (weak) stationary
and non-stationary series. Topics 3 and 4 focus on forecasting energy prices and resource
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production using AR and differential equation models. Each type of model is introduced
through a series of activities designed to build understanding through discovery.

The module contains two types of activities: class activities/discussions and student ac-
tivities. The class activities/discussions throughout the module are designed to be completed
in class. Students are guided through a series of steps intended to help the student discover
the concepts. The student activities are designed to be completed outside of the classroom
setting and can be given as additional assignments by the instructor.

Module Summary

In this module, the student will explore applications related to energy prices and production.
The data used is time dependent. The models may include deterministic and stochastic vari-
ables. Time series methods will be introduced and used to construct the time dependent
models and regression will be used to obtain parameter values. Model variables will be tested
for significance.

In 1956, a geoscientist named M. King Hubbert, predicted that peak oil production in the
continental US would peak between 1965 and 1970. To make this prediction, Hubbert used
the logistic model and historical US oil production data. Hubbert prediction was accurate
for the time, although could not have anticipated significant improvements in oil extraction
technology, such as hydraulic fracturing. Students will apply a similar technique to coal
production data ending at various time periods in order to make predictions about coal
production and peak production. Students can then observe the market and hydraulic frac-
turing effects on such predictions.

Fuel prices play an important role in our everyday lives. For motorists, most observe the
price of gasoline while driving into work. Homeowners are constantly reminded of the retail
prices of electricity, heating oil, and natural gas when the bill arrives. The prices affect our
budgeting, savings, decision to commute or not, and the appliances we purchase. Businesses
and industry also make decisions based on resource prices and availability. For some, this
information is so vital that they devote resources to modeling and forecasting these items.
For example, forecasting energy prices and usage plays an important role in economic analy-
sis performed by today’s energy providers. Local energy providers may want to forecast high
usage days by their customers ahead of time to ensure and plan energy delivery. Students
will gain some insight into this activity by exploring models used to forecast retail fuel prices.

Target Audience

The target audience is upper division students with some basic knowledge of inferential
statistical procedures and methodologies.
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Prerequisites

Prerequisites include a course in probability and statistics that include topics such as prop-
erties of probability, hypothesis testing, maximum likelihood, ANOVA, and regression.

Mathematical Fields

Statistics, Probability, Calculus, Discrete Mathematics.

Application Areas

The results of this module could be applied to understand production of energy resources
and electricity and its distribution over time. It could also be applied to make predictions
for future production and demand of energy resources and electricity.

Goals and Objectives

The main goal of this module is to improve students’ mathematical and statistical modeling
skills through critical analysis of time series data associated with energy production and
usage.

The objectives are to improve students’ ability to

• identify trends and seasonal adjustments in correlated data;

• explain and construct a time series model that accurately represents the data;

• use the model to predict short-term trends;

• identify deviations and how additional data points impact the time series model.

Technology/Software Needs

The open software R and RStudio, the open source and enterprise-ready professional software
for R. It is possible to use Excel in place of R in some parts of the module. Instructions for
using R, RStudio, and Excel are included in appendices.

The Module

Introduction

Statistical procedures rely on certain assumptions being met to produce valid results. For
example, common assumptions when applying a two-sample t-test include random sampling,
normality of data distribution, adequacy of sample size, and equality of variance in standard
deviation. The importance of the random sampling assumption relates to efforts to obtain
a sample that is as representative of the population as possible. Random sampling helps
minimize (eliminate) systematic bias.
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More accurately, to justify statistical procedures through mathematical theorems (and
thus, have some confidence in the interpretation of results), these theorems rely on random
sampling. A random sample can be thought of as a sequence of independent, identically
distributed (iid) random variables.1 That is, random sampling and independent, identically
distributed (iid) are basically the same. It is more common to use the phrase random sample
in statistics; whereas it is more common to use iid in probability. Upper case Roman letters
are generally used to represent random variables in statistics. Therefore, we represent a
sequence of iid random variables by

X1, X2, X3, . . . (1)

The purpose of this module is to discuss how to analyze a sequence of random variables
when they are time dependent and not independent, identically distributed. That is, given
a sequence of random variables X1, X2, X3, . . . , if for each t ∈ N, Xt is dependent on some
or all of the random variables X1, X2, X3, . . . , Xt−1, how do we statistically analyze the data
if we cannot assume iid?

There are many instances in which the sequence of random variables is not independently,
identically distributed. Common examples include such data as economic forecasts, census
analysis, and utility studies, among many others. Other examples include forecasting nat-
ural phenomena such as weather and earthquakes, as well as signal processing and pattern
recognition.

Class Discussion: Time Series Analysis

The examples given above (economic forecasts, census analysis, utility studies, natural phe-
nomena forecasts) all have something in common in how the data is collected. Before reading
ahead, spend some class time discussing how data is collected for these and other examples.
What characteristics do the data from these examples have in common? For instance, if we
are interested in measuring economic factors to determine how the economy is performing,
what would you suggest to collect meaningful data? Can you think of other examples of
data with similar characteristics?

Notes to Instructor. This opening discussion is intended to introduce students to the
concept of time series analysis. There are two characteristics usually associated with time
series data. The first is that in all these examples, as well as others, the data is time
dependent. Thus, time-dependent data (data measured over identified time intervals) satisfies
the statement “for each n ∈ N, Xn is dependent on some or all of the random variables
X1, X2, X3, . . . , Xn−1.” Another characteristic of time-dependent data is the time intervals
over which the data are collected tend to be of equivalent length. This helps simplify the
mathematical analysis used to prove time series techniques. Some other examples include
monitoring vital health factors in patients such as heart rate, blood pressure, vitamin levels,
etc.; public support of politicians or public policy issues; additional economic factors such as
new housing starts or consumer confidence; and transportation factors such as peak highway
traffic periods, record of on-time flight takeoffs, or train arrivals.

1http://www.math.uah.edu/stat/sample/
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The study of time-dependent data represents an area of statistics called time series. Time
series analysis techniques take into consideration the time-dependence of the data in order
to create a model fitted to the historical data and to make a forecast or prediction of future
data values. These forecasts can be point predictions or interval predictions for a future
value. If a forecast is made at time t− 1 for Xt then it is called a lead - 1 forecast.

Glossary of Terms

There are a few terms that will be useful when working through the activities in this mod-
ule. Readers who are familiar with these terms can proceed directly to the next section that
introduces the model.

A time series is defined as a sequence of an indexed set of random variables, {Xi : i ∈ N}
where the index set is based on successive equally-spaced time intervals. For example, a pa-
tient’s blood pressure may need to be measured twice a day (every 12 hours) over the course
of two months while taking a specific medication. Time series analysis consists of those
techniques and methodologies applied to a time series to extract meaningful information
from the data. Time series forecasting is the application of a time series model to data
in order to predict future data values based on previous observations.

Because time series are based on temporal indexing, a common method of representing
time series is graphically. This suggests there is a relationship between time series analysis
and regression analysis. Regression analysis is a statistical process measuring the rela-
tionship between and dependent variable and one or more independent variables. However,
there are some critical differences between time series analysis and regression analysis.

Class Discussion. Before reading ahead, spend some class time discussing what some of the
critical differences are between time series analysis and regression analysis. The relationship
between regression analysis and time series analysis is further explored later in the module.

Notes to Instructor. One critical difference is, once again, the time index. Regression
analysis does not take time dependence into account in its analysis. Although it is possible
to fit a regression curve to a time series, this model assumes “independence” between the
various data points. This does not mean a regression curve is useless when analyzing a
time series. It could provide some insight into the data. For example, if the mean of the
data is a deterministic function of time, E[X(t)] = µ(t), then regression may be useful
in determining this curve. Common examples of such deterministic functions include the
modeling of linear trends, periodic trends, and exponential trends in the data. Furthermore,
depending on reasons for the analysis, a regression model might be sufficient for the problem
at hand.

A mathematical or statistical model is an abstract representation that uses math-
ematical or statistical language and concepts to describe the behavior of a system. Mathe-
matical models are used in the natural sciences (physics, biology, earth science), engineering
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sciences (computer science, artificial intelligence), and the social sciences (economics, psy-
chology, sociology, political science). A model can be used to help explain different com-
ponents of a system and make predictions about its future. Mathematical models can take
many forms: dynamical systems, statistical systems, differential equations, graphical sys-
tems, and game theoretic models, as well as many others. Models are also identified in
terms of whether there is an element of randomness or not. Deterministic models can be
described as models in which the output is completely determined by parametric values and
initial conditions. That is, there is no element of random variation. Stochastic models, on
the other hand, possess some inherent randomness. The same parametric values and initial
conditions could lead to different outcomes.

Graphical representations of times series are a common means of presenting the data. A
time series plot simply is the variable plotted against the appropriate time intervals. Be-
low is a time series plot (2) of Lake Huron levels between January 1965 and December 1970.2

Time series plots can provide a quick assessment of potential trends or seasonal patterns in
some time series datasets.

1965 1966 1967 1968 1969 1970

12

14

16

18

20

(2)

Regression and time series models will produce a predicted value for the dependent vari-
able ŷ. The observed value y in most cases will not exactly equal the predicted value. The
residual e is the difference between the observed value and the predicted value.

e = y − ŷ (3)

This module concentrates on a few of the more commonly used time series models. These
models include the moving average (MA) model, the autoregressive (AR) and model
and autocorrelation function (ACF ), and the autoregressive integrated moving av-
erage (ARIMA) model. These models relate the present value to past values and past
prediction errors.

2https://datamarket.com/data/set/22pw/monthly-lake-erie-levels-1921-1970
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Seasonality is a characteristic of time series which regular variations recur in the data
in fixed periodic intervals. Common periodic intervals include yearly, quarterly, monthly,
and daily.

Topic 1: Elementary Time Series - Smoothing

We begin our discussion of elementary time series and moving average models with a class
activity and discussion. The example uses the mathematical notion of average to introduce
the concept of a moving average. Recall that the standard arithmetic average of t values
{x1, x2, . . . , xt} is given by

x̄ =
1

t

t∑
i=1

xi =
x1 + x2 + · · ·+ xt

t

A weighted average of t values {x1, x2, . . . , xt} is given by

ω1x1 + ω2x2 + · · ·+ ωtxt

where
ω1 + ω2 + · · ·+ ωt = 1

We will make use of these basic definitions of average in the following activity.

Class Activity: Comparing Moving Weighted Averages

Table 1 represents United States Coal Production in millions of short tons (2000 lbs) from
1997 through 20163.

Year Coal (tons) Year Coal (tons) Year Coal (tons) Year Coal (tons)
1997 1,089.90 2002 1,094.30 2007 1,146.60 2012 1,016.50
1998 1,117.50 2003 1,071.80 2008 1,171.80 2013 984.80
1999 1,100.40 2004 1,112.10 2009 1,074.90 2014 1,000.05
2000 1,073.60 2005 1,131.50 2010 1,084.40 2015 896.90
2001 1,127.70 2006 1,162.70 2011 1,095.60 2016 728.20

Table 1: US Coal Production 1997-2016

1. Construct a time series plot of the data. Describe some trends or patterns in the data.

2. Table 2 contains the running averages of US coal production for consecutive years.
That is,

xt + xt−1

2
for t = 1998, 1999, . . . , 2016

3Independent Statistics & Analysis, U.S. Energy Information Administration, https://www.eia.gov/
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Years Average Years Average Years Average Years Average
1997-98 1103.7 2002-03 1083.05 2007-08 1159.2 2012-13 1000.65
1998-99 1108.95 2003-04 1091.95 2008-09 1123.35 2013-14 992.425

1999-2000 1087 2004-05 1121.8 2009-10 1079.65 2014-15 948.475
2000-01 1073.6 2005-06 1147.1 2010-11 1090 2015-16 812.55
2001-02 1094.3 2006-07 1154.65 2011-12 1056.05

Table 2: US Coal Production Two-Year Running Average

On the same graph as the original data, construct a time series plot of the two-year
running average data points found in table 2.

3. Construct a table consisting of the three year running averages (and average of length
3) for the data in table 1. On the same graph as the previous two plots, construct a
time series plot of these “running averages of length 3” as well.

xt + xt−1 + xt−2

3
for t = 1999, 2000, . . . , 2016

4. Compare the three time series plots. What observations can you make? In particular
what do you notice between the time series plot of the original data and the 3-point
average time series plot? If we continued to increase the number of points used in
calculating this ”running” average, what do you would imagine the time plots would
look like?

Notes to Instructor. Some potential answers and comments to the class activity.

1. The students should recognize that coal production was relatively at the same levels
from 1997 through 2008. Around 2008 it appears coal production began dropping off
dramatically. Some discussion about what could have caused the drop starting around
2008 could include such items as the development of new technology (fracking and thus
cheaper natural gas), improved efficiency with burning coal, or moving to alternative
fuel sources. The time series plot is the red plot below with red squares.

2. The time series plot for the average of two years is included in the plot below (green
triangles).

3. The time series plot for the average of length 3 is included in the plot below (blue).

4. The students should recognize that by taking increasingly larger averages, the plots begin
to appear to have a ”smoothing” effect. Note that the average of length 3 plot appears
to “smooth out” the time series plot of the original data. The concept of a moving or
running average being used to smooth data in order to better observe trends in discussed
after the activity.
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Smoothing Time Series with Weighted Averages

The previous activity demonstrates the concept of smoothing in time series. Smoothing
is a type of filter that helps reveal trends or patterns in the data. A common method of
smoothing is moving averages. A moving average is commonly described as a (possibly
weighted) average calculated for each time point using observed values that surround each
of those values4. For example, the class activity above asked you to calculate the average
of length 3 for each time period using the previous two time periods xt−2 and xt−1 in the
calculation:

xt + xt−1 + xt−2

3
= µt

We could have also calculated a moving average of length 3 using the previous observed value
xt−1 and the next observed value xt+1,

xt−1 + xt + xt+1

3
= µ∗

t

In fact, we could have just as easily calculated a weighted average of length 3

ωt−1xt−1 + ωtxt + ωt+1xt+1 = µ∗∗
t

The previous example suggests weighted averages play a role in smoothing away seasonality in
data. Seasonality can obscure critical trends and patterns within time series data. Smoothing
away seasonality allows for easier identification of these trends. Applying a weighted average
to time series data is one method of smoothing away the seasonality. However, how do we
know which weighted average works best with a given time series dataset?

4https://onlinecourses.science.psu.edu/stat510
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Class Activity: Smoothing with Weighted Averages

Tables 3 and 4 represent the total monthly electricity generated (in thousands of megawatt
hours) in the United States from January 2011 (2011-01-15) through December 2016 (2016-
12-15)5. This dataset is represented graphically in the time series plot (4). The time series
plot shows the quantities in millions of megawatt hours.

1. Study the time series plot and data for a few moments. What is the seasonality? Is
the seasonality monthly? Quarterly? Semi-annually? Yearly? That is, describe how
electricity usage in the United States fluctuates seasonally. Justify your conclusion.

2. Before applying weighted averages to smooth away the seasonality, what sort of trends
would you suggest exist in this data? That is, beyond the seasonal fluctuations, has
electricity usage in the United States increased on average over the past 6 years? Has
it decreased? Has electricity usage remained constant over the past 6 years?

3. We will compare several different moving averages to gain some insight into which type
of moving average works best with this dataset. Construct a table of values for each
weighted average using R or Excel. Then plot the resulting values on a time series
plot.
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4. Compare the four time series plots. Which of the four plots best smooths away the
seasonality in the data? Justify your response.

5Independent Statistics & Analysis, U.S. EIA, https://www.eia.gov/electricity/data/
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Month mwh Month mwh Month mwh
2011-01-15 362872 2012-01-15 339526 2013-01-15 348967
2011-02-15 313127 2012-02-15 309389 2013-02-15 309728
2011-03-15 318710 2012-03-15 309090 2013-03-15 325399
2011-04-15 302401 2012-04-15 295229 2013-04-15 299333
2011-05-15 323628 2012-05-15 336516 2013-05-15 322156
2011-06-15 367727 2012-06-15 360825 2013-06-15 356823
2011-07-15 418693 2012-07-15 414641 2013-07-15 394846
2011-08-15 406511 2012-08-15 395700 2013-08-15 385286
2011-09-15 337931 2012-09-15 334586 2013-09-15 340941
2011-10-15 308699 2012-10-15 311652 2013-10-15 314925
2011-11-15 304102 2012-11-15 305976 2013-11-15 314540
2011-12-15 335740 2012-12-15 334635 2013-12-15 353021

Table 3: US Electricity Generation 2011-2013

Month mwh Month mwh Month mwh
2014-01-15 377255 2015-01-15 360455 2016-01-15 352745
2014-02-15 324348 2015-02-15 334476 2016-02-15 313749
2014-03-15 331823 2015-03-15 324192 2016-03-15 304168
2014-04-15 297631 2015-04-15 294133 2016-04-15 292836
2014-05-15 324724 2015-05-15 322087 2016-05-15 317337
2014-06-15 357844 2015-06-15 362409 2016-06-15 368418
2014-07-15 385780 2015-07-15 400419 2016-07-15 412450
2014-08-15 384341 2015-08-15 392116 2016-08-15 410113
2014-09-15 339887 2015-09-15 350122 2016-09-15 351769
2014-10-15 314522 2015-10-15 312112 2016-10-15 312828
2014-11-15 317495 2015-11-15 300653 2016-11-15 297427
2014-12-15 337957 2015-12-15 324427 2016-12-15 345238

Table 4: US Electricity Generation 2014-2016
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(4)

Notes to Instructor. Some potential answers and comments to the class activity.

1. The students should recognize the data is monthly with a yearly seasonality. It could be
argued that the seasonality is semi-annually with the “troughs” (of about equal depth -
occurring in fall and spring) occurring every six months. However, the peaks in winter
and summer are of different heights. The winter peaks suggest greater electricity usage
occurs in the winter.

2. There is seasonal fluctuation. However, peaks and valleys are of roughly the same
values each year over the past 6 years. That is, electricity usage appears to be relatively
constant over the past six years, suggesting a steady (flat) trend. Smoothing away
seasonality should result in a relatively flat trend line.

3. A plot of each of the weighted averages appears below.
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The time series plots that smooth away the seasonality best are the monthly averages.

1

13

t+6∑
i=t−6
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1

24
xt−6 +

1

12

t+5∑
i=t−5

xi +
1

24
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In this case, the weighted average (that weighs the “outside” months less) is usually the
standard model.

Note that the monthly models smooth away the seasonality better than the bi-monthly
models. Because the data is recorded monthly with a yearly seasonality, the weights of the
weighted average are based on a cycle of 12. The typical formula used to smooth away
seasonality in quarterly data is based on a cycle of 4.
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1
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Student Activity: Smoothing with Weighted Averages - Quarterly Natural Gas
Prices

Table 5 represents the quarterly average residential natural gas prices (in US dollars per
million cubic feet) in the United States from January 2011 (2011Q1) through December
2016 (2016Q4)6.

Quarter Price Quarter Price Quarter Price
2011Q1 11.16 2013Q1 9.74 2015Q1 9.66
2011Q2 13.43 2013Q2 12.56 2015Q2 12.43
2011Q3 17.48 2013Q3 16.93 2015Q3 17.02
2011Q4 11.47 2013Q4 10.34 2015Q4 10.38
2012Q1 10.44 2014Q1 10.2 2016Q1 8.79
2012Q2 12.98 2014Q2 13.56 2016Q2 11.4
2012Q3 16.2 2014Q3 17.48 2016Q3 17.31
2012Q4 10.79 2014Q4 10.88 2016Q4 10.29

Table 5: US Quarterly Average Residential Natural Gas Price 2011-2016

1. Construct a time series plot for the data in Table 5.

2. Describe the trends and seasonality that exists in the data.

3. Construct a table of values for each weighted average using R or Excel. Plot the
resulting values on a time series plot. Compare the plots. Which of the plots best
smooths away the seasonality in the data? Justify your response.

6Independent Statistics & Analysis, U.S. Energy Information Association, https://www.eia.gov/
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Notes to Instructor. Some potential answers and comments to the student activity.

1. A time series plot of the data is
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Time series plot of natural gas prices

2. The trend for this time series is roughly constant with an approximate mean value of
12.6. The seasonality is clearly quarterly.

3. A plot of each of the weighted averages appears below.The green curve represents the
weighted average. The blue curve represents the standard average. Both suggest rea-
sonable smoothing of the data, perhaps the weighted average providing a slightly better
representation.
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Student Activity: Smoothing with Weighted Averages - Hydroelectric

Table 6 represents the monthly electricity generated by Hydroelectric power (in thousand
megawatt hours) in the United States from January 2013 (13-Jan) through December 2016
(16-Dec)7.

Month Price Month Price Month Price Month Price
13-Jan 24828.53 14-Jan 21633.79 15-Jan 24138.38 16-Jan 25426.41
13-Feb 20418.47 14-Feb 17396.13 15-Feb 22286.08 16-Feb 24149.73
13-Mar 20534.36 14-Mar 24257.13 15-Mar 24280.9 16-Mar 27024.9
13-Apr 25097.1 14-Apr 25439.91 15-Apr 22470.98 16-Apr 25475.33
13-May 28450.09 14-May 26543.89 15-May 20125.42 16-May 25362.38
13-Jun 27384.07 14-Jun 25743.88 15-Jun 20414.08 16-Jun 22902.14
13-Jul 27254.57 14-Jul 24357.4 15-Jul 21014.22 16-Jul 21246.81
13-Aug 21633.32 14-Aug 19807.25 15-Aug 19122.11 16-Aug 19359.06
13-Sep 16961.15 14-Sep 16074.33 15-Sep 16094.12 16-Sep 16280.94
13-Oct 17198.59 14-Oct 17159.21 15-Oct 16630.4 16-Oct 17248.91
13-Nov 17676.83 14-Nov 18624.92 15-Nov 19337.83 16-Nov 18814.83
13-Dec 21128.3 14-Dec 22328.79 15-Dec 23165.56 16-Dec 22537.89

Table 6: Monthly US Electricity Produced by Hydroelectric 2013-2016

1. Construct a time series plot for the data in Table 6.

2. Describe the trends and seasonality that exists in the data.

3. Construct a table of values for each weighted average using R or Excel. Plot the
resulting values on a time series plot. Compare the plots. Which of the plots best
smooths away the seasonality in the data? Justify your response.

7Independent Statistics & Analysis, U.S. Energy Information Association, https://www.eia.gov/
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Notes to Instructor. Some potential answers and comments to the student activity.

1. A time series plot of the data is
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2. The time series has a slight downward trend over the two years. There appears to be
an annual seasonality in the data.

3. A plot of each of the weighted averages appears in the above plot.The green curve
represents the weighted average. The blue curve represents the standard average. Both
suggest a better smoothing model of the data might exist. This could be due to the
slightly downward trend in the data. This will be discussed in more detail in the other
topics.

Topic 2: Stationary Series and the Autocorrelation Function

The previous section demonstrated the effect of weighted averages in smoothing away sea-
sonality to better observe trends and patterns in time series data. The weighted averages
can help give a description of the time series data, but more work needs to be done if we
are to construct models that allow for inferences and predictions. We begin this process by
introducing the autocorrelation function (ACF) and (weakly) stationary series.
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Class Activity: Stationary Series

The diagram below shows the plots of three different time series. In this activity we will
examine basic descriptive measures such as mean and variance. Recall that a time series can
be described as a sequence of random variables X1, X2, X3, . . . in which random variable Xt

is dependent on some subset of the random variables {X1, X2, . . . , Xt−1}. Note that for each
time value t, random variable Xt has a distribution with mean µt and variance σ2

t .

1. Examine the plots closely. What can you conjecture about the mean and standard
deviation for Xt in each time series plot? For which plots is the mean relatively
constant? For which plots does the mean seem to vary among the random variables
X1, X2, X3, . . . ? For which plots is the variance relatively constant? For which plots
does the variance seem to vary among the random variables X1, X2, X3, . . . ?

2. Recall that the covariance is the joint variability between two variables. Examine
the three time series plots again. What can be conjectured about the covariance
between random variables Xt and Xt−h for some h ≥ 1? That is, are there some
values of h for which the variability of random variables Xt and Xt−h are related (i.e.
Cov(Xt, Xt−h) 6= 0)? Are there some values of h for which the variability of random
variables Xt and Xt−h are not related (i.e. Cov(Xt, Xt−h) = 0)?
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Notes to Instructor. The following are some possible answers to the class activity.

1. Time series plot A shows a mean and variance that remain relatively constant through-
out the time interval. There are clearly seasonal trends; however, a calculation of an
overall mean would roughly produce a horizontal line. Likewise, variance remains rel-
atively constant, once seasonality is taken into consideration. Time Series Plot B also
shows a mean that remains relatively constant throughout the time interval. However,
the time series plot shows more variability as time increases. This suggests the variance
in this time series is not constant. In this case, variance increases over time. Time
Series Plot C, on the other hand shows a relatively constant variance (the difference
between minimum and maximum values remains constant); however, the mean tends
to increase over time.

2. This question may require more scrutiny. Covariance can be determined by examining
seasonality in the data. All three time series plots demonstrate seasonality of one form
or another. For example, time series plot A shows a roughly yearly seasonality. This
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would suggest Cov(Xt, Xt−12) 6= 0 indicating a relationship between the variabilities of
Xt and Xt−12. This may not be the only non-zero covariance.

3. The point of this activity is to introduce the student to the concept of stationary series.
Time series plot A suggests a stationary series, while Time series plots B and C do
not. Class discussion could include references to the properties desirable in a stationary
time series.

The previous activity demonstrates some of the differences that occur with time series
data. Time series Plot A suggests a scenario that, when seasonality is taken into account,
is relatively ”stable” throughout the time interval. That is, the mean and variance remain
relatively constant. Time series plot B shows a relatively constant mean, but the data clearly
increases in variance over the time interval. In the case of time series plot C, the variance is
relatively stable, but the mean increases over the time interval. All three series show strong
indications of seasonality. That is, there is correlation between Xt and Xt−h for some h ≥ 1.
Correlation between elements from the same series separated by a given interval h is called
autocorrelation.

Class Activity: The Role of Trends and Seasonality

To better define and understand autocorrelation, we will look more closely at the role of
trends and seasonality in time series data. The time series data in table (7) and the corre-
sponding time series plot (5) represents the average monthly retail heating oil prices between
January 2014 and December 2015 (in dollars per gallon)8.

Month Price Month Price Month Price Month Price
Jan 2014 (t = 0) 4.06 Jul-14 3.87 Jan-15 2.93 Jul-15 2.73

Feb-14 4.23 Aug-14 3.82 Feb-15 2.98 Aug-15 2.51
Mar-14 4.1 Sep-14 3.76 Mar-15 3.13 Sep-15 2.45
Apr-14 3.97 Oct-14 3.62 Apr-15 2.86 Oct-15 2.42
May-14 3.95 Nov-14 3.5 May-15 2.88 Nov-15 2.37
Jun-14 3.9 Dec-14 3.25 Jun-15 2.83 Dec 2015 (t = 24) 2.18

Table 7: Heating Oil Average Monthly Retail Prices

8“Short-term Energy Outlook Real and Nominal Prices,” Independent Statistics and Analysis, U.S. Energy
Information Administration, June 2017
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1. Study table (7) and time series plot (5). Describe the trend most likely associated with
the time series data.

2. For the purposes of this activity, we will assume the time series data is quarterly. Use
the weighted average model

Wt =
1

8
Xt−2 +

1

4
(Xt−1 +Xt +Xt+1) +

1

8
Xt+2

to calculate the values for t = 2, 3, . . . , 21. Plot the resulting weighted averages {Wt :
t = 2, 3, . . . , 21} on a graph.

3. For t = 2, 3, . . . , 21, calculate and plot

Yt = Xt −Wt

Examine the time series plot of {Yt : t = 2, 3, . . . , 21}. What was the effect of sub-
tracting the weighted average Wt from the corresponding data point Xt?

4. To calculate the seasonal effect, we first re-index the data points. We are assum-
ing seasonality is quarterly. With 24 data points, this gives 6 seasonal cycles. Let
k = 1, 2, 3, 4 and j = 0, 1, 2, 3, 4, 5. Re-index t = 0, 1, 2, . . . , 23 such that t = tk,j when-
ever t = 6(k − 1) + j (mod 6).

With each seasonal cycle, the mean for that cycle increases. That is, if Mj is the
mean for cycle j, j = 0, 1, 2, 3, 4, 5, then M0 < M1 < M2 < M3 < M4 < M5. Calculate
the mean estimate for each cycle:
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M̂j =
1

4
(X1,j +X2,j +X3,j +X4,j)

To estimate the seasonal effect, we will calculate averages across the data for a fixed
place in each cycle. That is, if k = 1 (the start of each cycle), then we calculate
X1,j − M̂j for j = 1, 2, 3, 4, 5 (every fourth data point) and average the values.

(a) Why do we subtract M̂j from X1,j?

(b) Why do we average every fourth data point for the seasonal component?

For k = 1, 2, 3, 4, estimate the four seasonal components

Ŝk =
1

9
[(Xk,1 − M̂1) + (Xk,2 − M̂2) + · · ·+ (Xk,6 − M̂6)] =

1

6

6∑
j=1

(Xk,j − M̂j)

If St is the seasonal component at time t, explain why St = St+4 for t = 0, 1, 2, . . . , 19.

5. Part (3) eliminated the trend component to the time series data. The next step is to
remove the seasonal component from the data. We do this by subtracting Ŝk from each
corresponding data point. If Zt represents what is left after removing the trend and
the seasonal components, then

Zt = Zk,j = Yt − Ŝk = Yk,j − Ŝk = Xk,j −Wt − Ŝk

Calculate Zt = Zk,j for each k = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5 (t = 2, 3, . . . , 21). Plot the
resulting time series Zt. After the trend and seasonal components are removed from
the data points, the plot of Zt is not 0. Explain why there appears to be “residual”
left over after subtracting the trend and seasonality effects.

Notes to Instructor. The following are some possible answers to the class activity.

1. The trend appears to be linear and decreasing. An approximate equation for the trend
line is y = −0.1x+ 4.3.
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2. The table of weighted averages and corresponding plot appear below.

t ave. t ave. t ave. t ave.
6 3.86 12 3.12 18 2.68
7 3.8 13 3.02 19 2.58

2 4.08 8 3.72 14 2.97 20 2.48
3 4.02 9 3.6 15 2.94 21 2.4
4 3.95 10 3.43 16 2.87
5 3.9 11 3.24 17 2.78

Table 8: Weighted Averages
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3. The effect of subtracting Wt from the data is the trend has been removed. Note the
plot is no longer increasing. Note also that removing the trend effects brings out the
seasonality.

t diff. t diff. t diff. t diff.
0 -0.03 6 -0.02 12 -0.04 18 -0.01
1 0.14 7 -0.06 13 0 19 -0.23
2 0.01 8 0.22 14 0.16 20 0.10
3 -0.12 9 0.09 15 -0.12 21 0.07
4 0.06 10 -0.04 16 0.14 22 0.01
5 0.02 11 -0.28 17 0.09 23 -0.18

Table 9: Trend Removed
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4. M0 = 4.09, M1 = 3.89, M2 = 3.53, M3 = 2.97, M4 = 2.74, M5 = 2.35.

(a) Subtracting Mj from each X1,j removes the trend created within each cycle so that
what remains is only seasonality.

(b) Every fourth point is used in each seasonal component average because it fixes the
data points at the same place in the cycle. The expectation is that the effect of
seasonality is the same at the equivalent place in the cycle.

Ŝ1 = 0.08, Ŝ1 = 0.07, Ŝ1 = 0.02, Ŝ1 = −0.16. We are assuming the seasonality is
taken to be quarterly. This implies that Ŝt and ˆSt+4 use the same values in calculating
the average.

5. A plot of Zt appears below.

23



0 4 8 12 16 20 24
−0.2

−0.1

0

0.1

0.2

Heating Oil Prices without Trend or Seasonality

Trend and seasonality are the main components making up the data, but there is always
some variation that remains. The question is whether there is more ”pattern” to the
data or if What remains is just “noise” in the data. By eliminating the trend and
seasonality, the remains can be studied for effects of autocorrelation. This will be
discussed in the next section. Generally, we write

Xt = Wt + St + εt

This class activity demonstrates how time series can be decomposed into component
parts consisting of the trend Wt, the seasonality St, and random noise εt.

Xt = Wt + St + εt (6)

We will summarize the previous discussion about seasonality and trend by presenting
more formalized descriptions of these concepts.

• Seasonality (St) consists of patterns that repeat over a fixed time interval.

• The trend (Wt) consists of the underlying metrics of the data, increasing or decreasing
over time.

• The random noise (εt) is the residual after the data information has been allocated
to the trend and the seasonality.

Expression 6 represents an additive decomposition of a time series. This is not the only
possible method of decomposition of a time series. Expression 6 is appropriate in situations
where the seasonal variation remains constant throughout the time line (see diagram A in
(8)). In the case where seasonality varies through the time line (diagram B in (8)), a more
appropriate model is a multiplicative decomposition of the time series:

24



Xt = WtStεt (7)
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(8)

Both the additive and multiplicative models decompose into a trend component (Wt), a
seasonality component (St), and a residual (random noise) component (εt). Finding an ap-
propriate representation for Wt, St, and εt is critical to constructing a reasonable model Xt

for the time series. In the previous example we assumed seasonality was quarterly. Was this
a reasonable assumption?

One way to test if the time series model is appropriate is to test if the residuals no longer
contain any trace of a pattern. That is, after fitting data to a time series the residuals should
be “white noise.” They should have no autocorrelation. If there is autocorrelation in the
residuals, this is an indication that the model is wrong.

We formally define the autocorrelation function between Xt and Xt−h as

ACF (Xt, Xt−h) =
Cor(Xt, Xt−h)

StDev(Xt)StDev(Xt−h)
(9)

In the case where StDev(Xt) = StDev(Xt−h), we have

ACF (Xt, Xt−h) =
Cor(Xt, Xt−h)

V ar(Xt)
=

∑n−k
i=1 (Xi − X̄)(Xi+k − X̄)∑n

i=1 (Xi − X̄)2
(10)

Class Activity: The Role of Trends and Seasonality, Part II - Residuals

The autocorrelation function is commonly employed two different ways with time series. One
use is to detect non-randomness in the residuals. That is, if the decomposition has captured
all the pattern leaving only white noise in the residuals. The other use is to preemptively
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identify an appropriate time series model for the data.

When autocorrelation is used to detect non-randomness in the residuals, setting h = 1
(the first lag) is usually sufficient.When autocorrelation is used to determine an appropri-
ate time series model, several autocorrelations are calculated (and plotted) for different lag
values.

1. Using the heating oil average monthly retail prices data from the previous activity,
calculate the lag-one autocorrelations (h = 1) for the residuals.

ACF (Xt, Xt−1) =
Cor(Xt, Xt−1)

V ar(Xt)
=

∑n−k
i=1 (Xi − X̄)(Xi+k − X̄)∑n

i=1 (Xi − X̄)2

2. Based on your calculations, is the model from the previous class activity reasonable?

3. Calculate several more lags, h = 1, 2, 3, 4, ..., for the time series. Plot the lags on a
graph. What do you think the autocorrelation plot suggests?

Notes to Instructor. The following are possible answers to the class activity.

1. The R command to calculate the first lag is given by

my acf < −acf(dataset$variable, lag.max = 1)

The first lag is 0.306183

2. The value of the first lag is small enough to suggest the model from the previous class
activity is relatively reasonable. The lag value is not large enough to move to a more
complicated model. Enough of the pattern is picked up by the given model to provide a
reasonable interpretation.

3. The R command to calculate several lags is given by

my acf < −acf(dataset$variable, lag.max = 10)

Below is a table of the acf values along with an autocorrelation plot.

0 1 2 3 4 5 6 7 8 9 10
1.000 0.307 -0.132 -0.542 -0.475 -0.196 0.331 0.317 0.024 -0.062 -0.120
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The autocorrelations taper with some positive and negative values. The second lag
(−0.132) is slightly more than the square of the first lag (0.3072 = 0.094, a reasonable
rule of thumb that suggests the model is a reasonable fit. More about autocorrelations
will be discussed in the next section.

This gives us the information we need to describe the criteria for (weakly) stationary
time series. A stationary time series is one whose statistical measures, such as mean and
variance, are constant over time. That is, a stationary time series satisfies

• µ = µt = E[Xt] for all t (that is, µt is constant for all t)

• V ar(Xt) = σ2 for all t (that is, σ2
t is constant for all t)

• Cov(Xt, Xt−h) = σh for all t and h = 1, 2, 3, . . .
(that is, for each h = 1, 2, 3, . . . , Cov(Xt, Xt−h) is constant and ACF (Xt, Xt−h) = σh

σ2 )

• The theoretical value of ACF of a particular lag h is constant across the series. That
is, ACFt = ACFt−h for some h.

Student Activity: Smoothing with Weighted Averages - Natural Gas Prices

This activity uses the time series data on U.S. quarterly U.S. prices of natural gas found in
table 5 from January 2011 (2011Q1) through December 2016 (2016Q4).

1. Construct a time series plot for the data in Table 5.

2. Use the weighted average model

wt =
1

8
xt−2 +

1

4

t+1∑
i=t−1

xi +
1

8
xt+2
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to calculate the values for t = 6, 7, . . . , n − 6. Plot the resulting weighted averages
{Wt : t = 6, 7, . . . , n− 6} on a graph.

3. For t = 6, 7, . . . , n− 6, calculate and plot

yt = xt − wt

Examine the time series plot of {Yt : t = 6, 7, . . . , n − 6}. Explain the effect of
subtracting the weighted average Wt from the corresponding data point Xt. That
is, does this account for the trend in the data?

4. Calculate and plot the autocorrelation function. Interpret your results.

Notes to Instructor. The following are possible answers to the class activity.

1. This is the same plot as the previous student activity.

2. This is the same result as the previous student activity.

3. The answers to this question are similar to the previous class activity. They can be
easily calculated using R or Excel.

4. The autocorrelation values and plots appear below. The R command is

my acf < −acf(dataset$variable, lag.max = 10)

0 1 2 3 4 5 6 7 8 9 10
1.000 0.644 0.195 -0.145 -0.363 -0.390 -0.320 -0.229 -0.096 0.055 0.240
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The first lag (0.644 > 0.4) shows some significance. This would suggest that a first
order model is not the best choice. This will be discussed further in Topic 3. The
autocorrelations due taper off, but show some pattern in the decay. Again, this suggests
not all the pattern has been accounted for. More about autocorrelations will be discussed
in the next section.

Student Activity: Trends, Seasonality, and ACF - Monthly Wind Electricity

Tables 10 and 11 represent the monthly electricity generated by wind (in thousands of
megawatt hours) in the United States from January 2008 through March 20179.

2008 2009 2010 2011 2012

Jan 4273.185 5950.825 6854.337 8550.495 13630.86
Feb 3851.749 5852.175 5431.858 10451.56 11051.71
Mar 4782.02 7099.063 8589.077 10544.65 14027.34
Apr 5225.282 7457.696 9764.456 12421.66 12709.03
May 5340.284 6261.961 8697.525 11772.16 12540.32
Jun 5140.376 5599.422 8049.021 10985.07 11972.16
Jul 4008.401 4954.941 6723.891 7488.629 8823.083
Aug 3264.406 5464.474 6685.855 7473.594 8469.419
Sep 3111.452 4650.708 7105.502 6869.029 8789.865
Oct 4756.401 6813.626 7943.808 10525.43 12635.9
Nov 4993.646 6875.183 9747.619 12438.55 11648.5
Dec 6615.899 6906.058 9059.297 10655.77 14523.52

Table 10: US Electricity Generated by Wind 2008-2012

2013 2014 2015 2016 2017

Jan 14738.5 17911.21 15162.15 18531.42 20349.6
Feb 14075.59 14008.66 14921.55 20203.51 21691.63
Mar 15755.65 17735.88 15307.93 21979.27 25598.91
Apr 17476.27 18635.55 17867.15 20744.8
May 16238.7 15601.37 17151.34 18795.47
Jun 13748.11 15798.82 13421.27 16318.38
Jul 11093.61 12187.39 13675.45 17594.61
Aug 9633.884 10170.52 13080.03 13560.62
Sep 11674.08 11519.77 13971.57 16430.38
Oct 13635.02 14507.93 16380.04 20380.38
Nov 15803.26 18866.93 19681.72 19342.23
Dec 13967.06 14711.25 20098.37 22991.03

Table 11: US Electricity Generated by Wind 2013-2017

9Independent Statistics & Analysis, U.S. Energy Information Association, https://www.eia.gov/
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1. Construct a time series plot for the data in Tables 10 and 11.

2. Describe the trends and seasonality that exist in the data.

3. Use the weighted average model

Wt =
1

24
Xt−6 +

1

12

t+5∑
i=t−5

Xi +
1

24
Xt+6

to calculate the values for t = 6, 7, . . . , n − 6. Plot the resulting weighted averages
{Wt : t = 6, 7, . . . , n− 6} on a graph.

4. For t = 6, 7, . . . , n− 6, calculate and plot

Yt = Xt −Wt

Examine the time series plot of {Yt : t = 6, 7, . . . , n − 6}. Explain the effect of
subtracting the weighted average Wt from the corresponding data point Xt. That
is, does this account for the trend in the data?

5. Calculate and plot the autocorrelation function. Interpret your results.

Topic 3: Forecasting Fuel Prices - Regression and AR Models

In 1918, the price of gasoline was $0.25 per gallon. By the time of the great depression,
the average price had fallen to $0.18− $0.19 per gallon. In our automobile/commuter based
economy, the price of gasoline and diesel fuel continues to affect the everyday lives of most
Americans. In this topic, we will explore historical gasoline prices and how to forecast future
gasoline prices.

From a historical perspective, nominal gasoline prices have been quite volatile. This
volatility may come as no surprise as the price of the major ingredient, crude oil, can be
quite volatile. Although crude oil has not been scarce to the present, much of the world’s
supply comes from the middle east and other less politically stable countries. Prices have
often been influenced by cartels and cartel like organizations. The supply of oil on the market
has been controlled by the Texas Railroad Commissions in the 1930’s to OPEC today. We
will explore the relationship of the price of crude oil and price of gasoline.

The 1918 price of gasoline, $0.25 per gallon, is $3.92 per gallon inflation adjusted to 2015.
Compare this to the average retail price in 2015 of $2.36 per gallon. As seen in Figure 1,
the long term trend is exponential. To understand the inflation adjusted prices, we can use
regression to fit an exponential trend to annual average gasoline prices from 1918 to 201510.
The model takes the following form,

y(t) = a ∗ ebt, t = 0, 1, ..., 97 (11)

10Inflation Data, Inflationdata.com, https://inflationdata.com/articles/inflation-adjusted-gasoline-prices/

30



Year

$/
ga

llo
n

1920 1940 1960 1980 2000

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure 1: Average Annual Retail Gasoline Prices from 1918

where the year = 1918 + t, In order to use least squares linear regression to find the param-
eters a and b, we first transform the data by taking the natural logarithm of the average
annual gasoline prices. By regressing the transformed data against the time variable we
obtain parameter estimates for the model,

ln(y(t)) = ln(a) + bt (12)

Regression yields the parameter estimates,

ln(a) = −2.12506 and b = 0.0303. (13)

Hence, our regression determined exponential model is

y(t) = 0.1194 ∗ e0.0303t. (14)

Shown in Figure 2, our model indicates about a 3.03% annual continuously compounded
growth rate in the nominal price of gasoline since 1918. The actual average annual inflation
rate since 1918 is about 3.12% indicating that the average annual price of gasoline since 1918
in inflation adjusted terms has been approximately constant, growing a little less than the
rate of inflation.

Class Activity: Using Exponential Trends

The previous discussion shows how average annual growth rates for prices with an exponential
trend can be estimated using regression. We will use the method described in the discussion
and the data given in Table 12 to compare the growth rates of oil and gasoline over the
time period 1945 - 2015. Table 12 gives a sample of the annual average crude oil prices in
$/barrel, Oil(t), every five years beginning in 1948. The table also gives the average annual
retail gasoline prices in $/gallon for the same years.
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Figure 2: Retail Gasoline Prices and Exponential Model from 1918

Year Oil(t) Gasoline(t) Year Oil(t) Gasoline(t)
1948 2.77 0.26 1983 29.08 1.23
1953 2.92 0.29 1988 14.87 0.96
1958 3.00 0.30 1993 16.75 1.07
1963 2.91 0.30 1998 11.91 1.02
1968 3.18 0.34 2003 27.69 1.51
1973 4.75 0.39 2008 91.48 3.22
1978 14.95 0.65 2013 91.17 3.44

Table 12: Sample Annual Oil and Gasoline Prices 1945-2015

1. Use linear regression to fit an exponential model to the sample data for Oil(t), where
t = 0 in 1945.

2. Use linear regression to fit an exponential model to the sample data for Gasoline(t),
where t = 0 in 1945.

3. The average annual rate of inflation in the US over the period 1945 - 2015 is approx-
imately 3.7%. How does the continuously compounded growth rate of each compare
with each other as well as the average inflation rate over the same time period?

Notes to Instructor. The discussion to the class activity follows.

1. We transform the data for Oil(t) in Table(12) and use regression to find the parameters
for the model

ln(Oil(t)) = ln(a) + bt+ ε
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Regression yields the estimates,

ln(a) = 0.425645 and b = 0.055197.

Hence, our analysis determines the exponential model is

y(t) = 1.530577 ∗ e0.055197t.

Our model indicates an approximate continuous rate of increase of about 5.5% annually
for the averge price of crude oil in the US since 1945.

2. We transform the data for Gasoline(t) in Table(12) and use regression to find the
parameters for the model

ln(Gasoline(t)) = ln(a) + bt+ ε

Regression yields the estimates,

ln(a) = −1.75169 and b = 0.0405436.

Hence, our analysis determines the exponential model is

y(t) = 1.73481e0.0405436t.

Our model indicates an approximate continuous rate of increase of just over 4% annu-
ally for the retail price of gasoline since 1945. Notice how the rate of increase of price
of gasoline since 1945 has increased above the rate of increase since 1920.

3. The price of oil is increasing at an annual rate about 1.8% higher than the rate of
inflation and the average annual retail price of gasoline is increasing at a rate of just
over the rate of inflation since 1945.

Forecasing Gasoline Prices

In order to discuss forecasting, we will analyze the data over a shorter time horizon with
average prices taken weekly. For our discussion, we consider the average weekly retail gasoline
prices from the first week in 1995 to the end of 200011. Using a moving average method to
estimate trend and seasonal effects, Figure 3 shows the observed values, followed by the trend
estimated by a centered moving average, seasonal effects, and the random component with
trend and seasonal effects are removed. The seasonal effects on the price of gasoline reflect
the changing seasonal demand. In the US, the summer months are going to be the months
most heavily traveled, especially when travel is by automobile. Hence, we observe the largest
positive seasonal effect on the price of gasoline, 0.0515, during the 26th week of the year
(last week in June) . The largest negative seasonal effect is -0.0486 which occurs during the
7th week of the year, mid-February. Although as cubic model for the trend seems like a
possibility for this six year time period, we shall see that there is a strong trend determined
stochastically.

11Weekly US Regular Convential Retail Gasoline Prices,” Independent Statistics and Analysis, U.S. Energy
Information Administration, https://www.eia.gov/
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Figure 3: The decomposition of Gasoline Prices into a trend and seasonal effects

If our time series is stationary in the mean, variance, and covariance (2nd order station-
ary), then the ACF depends only on the time lag h. In this case, we can use the sample
autocorrelation function (acf) to estimate ACF. First, we define the sample autocovariance
function, ck

ck =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄)

Then the sample autocorrelation function is

acf(k) =
ck
c0

Values for the ACF and acf are between −1 and 1. A value of acf(k) close 1 indicates
a strong positive correlation between the values in the series that are separated by k-units
of time. A correlogram is a graphical representation of acf(k) for a finite number of time
lags. To illustrate, let’s consider the time series for weekly gasoline prices from 1995 through
2000, Figure 4. Notice, the correlogram begins with acf(0) = 1. This is included to provide
scale for other values.The horizontal dashed line provides the reference for the 95% level of
significance. The strong autocorrelation at each lag is indicative of the trend in the data.
Recall the population ACF is defined on a second order stationary time series. A time series
with a trend is not second order stationary since the mean will vary with time. Therefore,
we will need to model the trend first in order to get accurate statistical information from
the sample acf .

The trend for a time series is deterministic if we can specify a function of time that models
this trend and the time series tends to revert back to the trend over time. Otherwise, a trend
is stochastic and does not recover from the random shocks. In viewing the decomposition,
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Figure 4: The sample autocorrelation function for weekly Gasoline Prices 1995 through 2000

one may wish to try modeling the trend with a polynomial of odd degree. A stochastic trend
can by recognized by first differencing the data. To define the differences, we first define the
backshift operator B,

Byt = yt−1.

The first and second order differences are defined as follows:

5yt =(1−B)yt = yt − yt−1

52yt =(1−B)2yt

Differencing the seasonally adjusted gasoline prices twice (2nd order differencing), we obtain
the time series and acf shown in Figure 5 . The autocorrelation function is well behaved
and indicates a stationary process. The acf(1) appears to be significant. If the acf(1) is
significant then the second order differences have a moving average structure remaining and
a stochastic trend may be preferable. If acf(1) is not significant then the the second order
differences are best described as white noise, indicative of a quadratic trend. It is clear from
Figure (3) that the trend is not quadratic. Taking higher order differences does not indicate
a higher order polynomial is a preferred starting point for a model. This first step does not
provide a model, but it gives us a starting point for specifying a model. We can begin by
exploring AR(p) models and analyzing the residuals. If the trend had been deterministic,
then we would begin by choosing the best curve for the trend. In our case, an AR(2) provides
good place to begin analysis.

We begin our model construction by letting x(t) be the seasonally adjusted data for gaso-
line prices from 1995 through 2000. Hence, x(t) will the data minus the seasonal adjustment.
Since we are specifying an AR(2) stochastic trend we have,

x(t) = β1x(t− 1) + β2x(t− 2) + C + εt (15)
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Figure 5: 2nd order difference plot and its acf

Using least squares regression we obtain the parameter estimates,

x̂(t) = 1.50548x(t− 1)− 0.50113x(t− 2)− 0.00405 + εt (16)

Where the estimate for the constant is not significantly different from zero. The fit is
quite good. The adjusted R2 is 0.9907. The residual plot and correlogram are shown in
Figure 6. It looks as though the trend has clearly been captured by the AR(2) process. The
correlogram shows the residuals could have come from white noise. The plot of the residuals
does show the possibility of increasing variance. This could be corrected by either using
a multiplicative smoothing model or tranforming the data using the natural logarithm or
we could seperately model the residuals. We will continue in our analysis using the AR(2)
model in (16).
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Figure 6: 2nd order difference plot and its acf
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Let y(t) be the model that includes the seasonal adjustments,

y(t) = x(t) + s(t) (17)

where ŝ(t) is the estimate of s(t) and is the time series of seasonal adjustments produced by
our smoothing process.

For forecasting and demonstration purposes, we examine weekly gasoline prices over a
shorter time period. Consider weekly gasoline prices from January through April 2005.

Week Gasoline(t) Week Gasoline(t)
1 1.745 9 1.904
2 1.771 10 1.979
3 1.802 11 2.039
4 1.839 12 2.095
5 1.896 13 2.137
6 1.89 14 2.196
7 1.873 15 2.251
8 1.878 16 2.198

17 2.197

Table 13: Average Weekly Gasoline Prices Jan-Apr 2005

As seen in Figure (7), this data visually exhibits a strong linear trend with respect to time.
We’ve previously seen a stochastic trend provides a model for the data over a different and
longer time period. For comparison purposes, in this exposition we will build a predictive
model using the linear trend, and let the reader build two different models in the exercises.
For the linear trend, we use linear regression to determine estimates for parameters β1 and
β2 the model,

y(t) = β1t+ β2 + εt (18)

Regression yields the fitted equation,

ŷ(t) = 0.0321 · t+ 1.6929 + εt (19)

The statistics for this fit include the residual standard error: 0.0439 on 15 degrees of freedom
and an adjusted R-squared of 0.9314. The plots of the model and data are shown in Figure
(7).

Although a we have a strong linear fit, for predictive purposes, the model is still in-
adequate. We can see this in two ways. First, the residual standard error under certain
conditions is an approximation of the one-period ahead forecast error. In this case, 0.0439
likely would not be an acceptable forecast error for next week’s gasoline prices. Second,
consider the residual plot shown in Figure(8). There is a clear autocorrelation structure in
the residuals. With considerable structure in the residuals, the residual standard error is
likely not a good estimate of the forecast error. A model appropriate for forecasting should
have residuals that come from white noise. However, it seems reasonable to assume the
mean and variance in the residual plot are stationary. Hence the sample acf and sample
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Figure 7: Average gasoline prices first quarter 2005 and trend

Time

R
es

id
ua

ls

5 10 15

-0
.0

5
0.

00
0.

05

,

0 2 4 6 8 10 12

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

Figure 8: Residuals to linear model and sample acf

pacf estimate the population ACF and PACF, respectively, and their significance levels can
be used to gain insight into the structure of the residuals.

In Figure (8), the sample acf shows a periodic dampening sequence of autocorrelations
in the lags. Some of these lags exceed the level of significance. This pattern is common for
data from an AR(2) process, but the pacf can be used to provide more information on the
order of the autoregression model to be used. Indeed, the sample pacf , Figure(9) indicates
correlation coefficients at lags 1 and 2 are likely significant, although the coefficient at lag 2
is just touching the level of significance line.

Based on this information we choose an AR(2) model for the residuals,

εt = α1εt−1 + α2εt−2 + ν(t)

Using ordinary least squares we obtain the fit,

ε̂t = 1.1043εt−1 − 0.6033εt−2 + ν(t) (20)
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Figure 9: The sample pacf to the residuals from linear model

Finally we examine the residuals, disturbances, for this AR(2) model. From the information
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Figure 10: Disturbances to Residual model and sample acf

contained in the graphs in Figure(10) it is likely disturbances for the AR(2) model for the
residuals come from a white noise process. Hence, the residual standard error of about 0.0306
approximates the one period ahead forecast error. The final model has the form,

y(t) = β1t+ β2 + εt

εt = α1εt−1 + α2εt−2 + ν(t)

ν(t) ∼ WN

The estimates for the parameters now have been determined. We are now ready to
forecast using the fit to our model. We will use the average weekly price of gasoline for
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weeks 16 through 22 is shown in Table (16). For notation, if y(t) denotes the process from
which our data has been generated and ŷ(t) is the fitted model, then the one period ahead
forecast at time T is denoted ,ŷT,1. As an example, if we wish to use the fitted model
developed above to forecast the average price of gasoline for week T in 2005, we need to
calculate

ŷT,1 = β̂1(T + 1) + β̂2 + ε̂T,1

where the one period ahead forecast in the residual is

ε̂T,1 = α̂1εT + α̂2εT−1

and εT and εT−1 are the observed errors from the linear model at times T and T − 1.
Therefore,

ε̂17,1 = 1.1043 · −0.041549 +−0.6032 · −0.008451 = −0.040783

ŷ17,1 = 0.032098 · 18 + 1.69288− 0.40783 = 2.22986

We summarize the calculations of the one week ahead forecasts in Table (14).

Week Observed Price Linear Fit Residual Residual Fit Forecast Forecast Error
16 2.198 2.2065 -0.0085
17 2.197 2.2386 .0.0415
18 2.191 2.2706 -0.0796 -0.0408 2.2299 -0.0389
19 2.137 2.3027 -0.1657 -0.0629 2.2399 -0.1029
20 2.166 2.3348 -0.2188 -0.1350 2.1999 -0.0839
21 2.077 2.3669 -0.2899 -0.1417 2.2253 -01483
22 2.051 2.3990 -0.3480 -0.1881 2.2109 -0.1599

Table 14: One week ahead gasoline price forecasts May 2005

Student Activity: Models for forecasting gasoline prices

The previous discussion demonstrates model construction for a model used to predict one
week ahead gasoline prices. In this activity, the reader will inlcude an explanatory variable
in the model. Consider the US weekly average crude oil and and gasoline prices in Table
(15)

Week Oil(t) Gasoline(t) Week Oil(t) Gasoline(t)
1 42.52 1.745 9 51.75 1.904
2 44.07 1.771 10 52.74 1.979
3 46.79 1.802 11 54.22 2.039
4 47.85 1.839 12 55.93 2.095
5 48.56 1.896 13 52.95 2.137
6 46.97 1.89 14 54.97 2.196
7 46.08 1.873 15 55.24 2.251
8 47.82 1.878 16 51.44 2.198

17 52.39 2.197
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Table 15: Sample Weekly Oil and Gasoline Prices Jan-Apr 2005

1. Construct a model to predict 1 - week ahead average gas prices in the US using the
previous week’s price of crude oil as an explanatory variable.

(a) Plot on the same axis, Oil(t) and 25×Gasoline(t) from the Table (15). Can you
identify places where the movement in the price of gasoline seems to lag the price
of oil by a week?

(b) Use linear regression to estimate the model parameters for

Gasoline(t) = β1Oil(t− 1) + εt (21)

Week Oil(t) Gasoline(t) Week Oil(t) Gasoline(t)
17 52.39 2.197 22 50.15 2.051
18 52.00 2.191 23 53.76 2.078
19 50.64 2.137 24 53.74 2.099
20 50.33 2.116 25 56.18 2.128
21 47.77 2.077 26 59.04 2.186

Table 16: Average Weekly Oil and Gasoline Prices May-June 2005

(c) Assess the model fit. Identify Adjusted R2, residual standard error, and plot the
residuals.

(d) Examine the residuals. Construct the sample acf and pacf . Do the residuals
appear to have come from white noise?

(e) Use the estimated model to provide the one week ahead forecast for gasoline prices
in May 2005 and June 2005 given the data in Table(16).Calculate the one week
ahead forecast errors.

2. Construct a model to predict 1 - week ahead average gas prices in the US using an
explanatory variable and a stochastic trend model.

(a) Add the previous week’s gasoline price to the model,

Gasoline(t) = β1Oil(t− 1) + β2Gasoline(t− 1) + εt (22)

(b) Assess the model fit. Identify Adjusted R2, residual standard error, and plot the
residuals.

(c) Examine the residuals. Construct the sample acf and pacf . Do the residuals
appear to have come from white noise?

(d) Use the estimated model to provide the one week ahead forecast for gasoline prices
in May 2005 and June 2005 given the data in Table(16). Calculate the one week
ahead forecast errors.

3. Compare the three models for forecasting the one week ahead average US gasoline
prices. Which one of the three ended up providing the best forecasts? Why do you
think this model was superior to the others? Which model did the AdjustedR2, residual
standard error, and other statistics imply would be the best to use for forecasting?
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Notes to Instructor. The discussion to the exercises follows.

1. Solutions to using the previous week’s oil prices as an explanatory variable in the mod-
eling the average weekly gasoline prices.

(a) The oil vs scaled gasoline is shown in Figure (11) with the scaled gasoline time
series formatted with dashed lines. Although it is not always clear that the change
in gasoline prices is preceded by the change in oil prices, near the end of week
5, 2005 (2005.10) the upturn in oil prices clearly precedes the upturn in gasoline
prices.
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Figure 11: Price of oil vs 25x price of gasoline

(b) The estimate for β1 is β̂1 = .0399052.

(c) In assessing the model fit, we identify Adjusted R2 = 0.9989, residual standard
error of 0.06767, and plot the residuals in Figure(12).

(d) The residual plot appears random or at least there is no reason to believe that it is
not second order stationary. The sample acf and pacf are shown in Figure (13).
Both graphs indicate that the residuals could have come from white noise.

(e) The one week ahead forecasts are shown in Table(17).

Week forecasts error Week forecasts error
18 2.09 0.10 23 2.00 0.08
19 2.08 0.06 24 2.15 -0.05
20 2.02 0.10 25 2.14 -0.02
21 2.01 0.07 26 2.24 -0.06
22 1.91 .14

Table 17: 1-week ahead forecasts and forecast errors May-June 2005
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Figure 12: Residual plot

2. Solutions to using the previous week’s oil prices as an explanatory variable and modeling
the stochastic trend in the model of the average weekly gasoline prices.

(a) The estimate for β1 and β2, respectively, is β̂1 = 0.010459 and β̂2 = 0.748583.

(b) In assessing the model fit, we identify Adjusted R2 = 0.9998, residual standard
error of 0.0283, and plot the residuals in Figure(14).

(c) The residual plot appears random or at least there is no reason to believe that it is
not second order stationary. The sample acf and pacf are shown in Figure (15).
Both graphs indicate that the residuals could have come from white noise.

(d) The one week ahead forecasts are shown in Table(18).

Week forecasts error Week forecasts error
18 2.19 0.00 23 2.06 0.02
19 2.18 -0.05 24 2.12 -0.02
20 2.13 -0.01 25 2.13 -0.01
21 2.11 -0.03 26 2.18 0.01
22 2.05 0.00

Table 18: 1-week ahead forecasts and forecast errors May-June 2005

3. Discussion on comparing the three models for forecasting the one week ahead average
US gasoline prices.

The model using the previous week’s oil price and the stochastic trend is clearly the
best model for forecasting the one week ahead prices. The model with the deterministic
trend and AR(2) residuals has a very good fit with a small residual standard error but
performs poorly as a forecasting model. This suggests that the actual trend is stochastic.
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Figure 13: The sample ACF and PACF for the residuals

This is an example of a model that has a very good in-sample performance but poor
out of sample performance. The model using only the previous week’s oil price as an
explanatory variable clearly needed to capture more of the gasoline price dynamics. The
adjusted R2 was very good, but the residual standard error indicated a poor out of sample
performance was likely. Finally, by including the stochastic trend term, we arrived a
very good forecasting model. The residual standard error seems to approximate the
forecasting errors well.

We should note that the sample acf and pacf are not quite as useful with our small
sample. The small sample of 17 weeks causes a wide 95% confidence band and makes
it difficult to identify nonzero autocorrelation coefficients and partial autocorrelation
coefficients.

Topic 4: Forecasting Peak Production - Differential Equation Mod-
els

In 1956, a geoscientist named M. King Hubbert, predicted that peak oil production in the
continental US would peak between 1965 and 1970. To make this prediction, Hubbert used
the logistic model and historical US oil production data. To see how Hubbert made this
prediction consider the logistic differential equation,

dy

dt
= ky(1− y

Q
) (23)

The solution to this differential equation is the well known logistic function and can be
obtained by separation of variables

y(t) =
Q

1 + Ae−kt
, A =

Q− y(0)

y(0)
(24)
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Figure 14: Residual plot

In the context of modeling a population, the parameter Q is called the carrying capacity.
To understand the assumptions to which this model would apply, one might consider the
rabbit population in a ten acre field. Being a specific size the field has finite resources for
food, water, and shelter. Initially, the rabbits have plenty of each and reproduce at a rate
nearly proportional to their population, the ratio y

Q
in equation (23) is close to zero for small

values of y. As the population size increases, competition for each of the available resources
drives the growth rate down. This effect can be seen in the model. As the population size,
y, approaches the carrying capacity Q, the ratio y

Q
approaches 1, and the growth rate dy

dt

approaches zero.
For modeling the rate of extraction of a scarce resource, the parameter Q represents the

total amount that can be extracted or recovered with current field knowledge and technology.
Initially, extraction of the resource occurs at nearly an exponential rate. Eventually, new
discoveries of resource deposits become more rare and the older deposits yield less in the
extraction process. Hence, the rate of extraction declines sharply.

To fit the model to oil production data, we rearrange (23)

1

y

dy

dt
= k − k

Q
y (25)

to show the equation for the relative rate of change. We let the average annual production
for a year, ∆y, approximate dy

dt
and apply linear regression to fit the model parameters. The

regression model for the relative rate of change that we use has the form

∆y

y
= β1 + β2y + ε (26)

In 1956, the data available is shown in the plot. The numerical values can be seen in column
∆y in Table (19).

45



0.00 0.05 0.10 0.15 0.20

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

,

0.05 0.10 0.15 0.20

-0
.4

-0
.2

0.
0

0.
2

0.
4

Lag

P
ar

tia
l A

C
F

Figure 15: The sample ACF and PACF for the residuals
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Using the data from Table 19 from the years 1931 - 1950, form the column ∆y
y

. Least
square regression yields,

∆y

y
= 0.06472− 0.000353y (27)

Assessing the fit, we obtained an r2 = 0.47. Though not a strong fit, about 50% of the
variation in the data can be explained by the linear relationship in the data. Comparing
(27) to (25) we obtain the estimates k = 0.06472 and Q = 183.34. With these estimates the
model solution becomes,

y(t) =
183.34

1 + 12.26e−0.06472t
, Y ear(t) = 1931 + t (28)

Now that we have fitted the model, we can interpret the results. First, (23) is quadratic
in y. Using the equation for the vertex of a parabola, we find that dy

dt
has a maximum at

y = Q
2

. Therefore, our regression model, dy
dt

has a maximum at y = 91.67 billion barrels
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of total production. Substituting this result into equation (28) yields t = 38.72. Hence,
maximum annual production occurs between 1969 and 1970. Finally, Q = 183.34 billion
barrels that can be extracted with current (1950’s) field knowledge and technology. Hubbert
provided a range of total recoverable oil resources from the lower 48 states between 150
and 200 billion barrels. This information came for the geological surveys of the time. The
model’s estimate of peak production dy

dt
= 2.97. The data show that actual peak production

in 1970 was about 3.5175, or about 18% more than the value predicted by the model.
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Figure 16: The Annual and Cummulative Oil Production Model Solutions

Notice that we obtain different estimates and different predictions for peak production if
we change the time interval over which we perform the regression. The interval of estimates
obtained in this way may also be useful.
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Year ∆y y Year ∆y y
1930 0.8979 12.9794 1951 2.2477 43.1211
1931 0.8512 13.8306 1952 2.2834 45.4045
1932 0.7829 14.6135 1953 2.3572 47.7617
1933 0.9056 15.5191 1954 2.3148 50.0765
1934 0.9081 16.4272 1955 2.4846 52.5611
1935 0.9939 17.4211 1956 2.6101 55.1712
1936 1.0954 18.5165 1957 2.6171 57.7883
1937 1.2775 19.7940 1958 2.4492 60.2374
1938 1.2133 21.0072 1959 2.5747 62.8121
1939 1.2644 22.2716 1960 2.5678 65.3799

1940 1.4991 23.7706 1961 2.6218 68.0017
1941 1.4042 25.1748 1962 2.6762 70.6779
1942 1.3855 26.5603 1963 2.7528 73.4307
1943 1.5056 28.0659 1964 2.7791 76.2098
1944 1.6732 29.7391 1965 2.8485 79.0583
1945 1.7137 31.4528 1966 3.0277 82.0859
1946 1.7334 33.1826 1967 3.2157 85.3016
1947 1.8571 35.0433 1968 3.3200 88.6216
1948 2.0148 37.0581 1969 3.3719 91.9935
1949 1.8418 38.8999 1970 3.5175 95.5110
1950 1.9736 40.8734 1971 3.4540 98.9650

Table 19: US Oil Production 1930-1971

Class Activity: Applying the Logistic Model

1. The values of the model parameters determined by regression, k and Q, are sensitive
to the choice of the time interval. In the discussion above we chose ∆y

y
and y from the

years 1931 to 1950.

(a) Perform linear regression using the model in (26) and the data from years 1930
to 1950. What is r2? What are the estimates for k and Q? In what year does the
model predict peak production? What is the predicted peak production and how
does it compare with the data point for that year?

(b) Repeat the preceding regression problem and answer the same questions, but use
data from years 1932 to 1950.

Notes to Instructor. The discussion of the class activity.

1. Solutions

(a) r2 = 0.5124, k = 0.0669 and Q = 158.004. The model predicts peak production
in the year 1966. The model predicts peak production to occur when 79 billion
barrels have been extracted and it predicts a value of dy

dt
= 2.64.
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(b) r2 = 0.4277, k = 0.06419 and Q = 190.99. The model predicts peak production
in the year 1971. The model predicts peak production to occur when 95.49 billion
barrels have been extracted and it predicts a value of dy

dt
= 3.06.

Student Activity: Applying the Logistic Model

1. In 2016, coal accounted for 30% of the electricity generation in the US. However, from
1980 to 2008 it consistently accounted for 50% or more of electricity generation in
the US. The use of coal has dropped off precipitously in just the past two years, thus
affecting any models that may have been used to predict coal production and demand
produced from historical data. In Table (20), ∆y is the US annual coal production
in units of million short tons from 1971 to 199012. y represents the cumulative coal
production through the year indicated. We will assume that most current mines began
after 1948, and take the total coal production from current mines to be 0 at the
beginning of 1949.

Year ∆y y Year ∆y y
1971 560.9 11,571.4 1981 823.8 18,261.1
1972 602.5 12,132.3 1982 838.1 19,084.9
1973 598.6 12734.8 1983 782.1 19,923.0
1974 610.0 13,333.4 1984 895.9 20,705.1
1975 654.6 13,943.4 1985 883.6 21,601.0
1976 684.9 14,598.0 1986 890.3 22,484.6
1977 697.2 15,282.9 1987 918.8 23,374.9
1978 670.2 15,980.1 1988 950.3 24,293.7
1979 781.1 16,650.3 1989 980.7 25,244.0
1980 829.7 17,431.4 1990 1,029.1 26,224.7

Table 20: US Coal Production 1971-1990

(a) Perform linear regression using the model in (26) and the data from coal mining
production in Table (20) years 1971 to 1990. What is r2? What are the estimates
for k and Q? Taking year = 1971 + t, in what year does the model predict peak
production? What is the predicted peak production? Using on line data, find the
year of peak production and the amount of peak production and compare these
to your model result.

(b) Our model is for production from current mines (production after 1948). In the
online discussion13, geologists estimate that there is 18.3 billion short tons of coal
recoverable from current mines. From 1949 through 2016, 52, 996 million short
tons had been mined from coal mines in the US. How much recoverable coal from
current mines is predicted by our model?

12Independent Statistics & Analysis, U.S. Energy Information Administration,
https://www.eia.gov/totalenergy/

13Independent Statistics & Analysis, U.S. Energy Information Administration,
https://www.eia.gov/energyexplained/
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Notes to Instructor. The discussion of the student activity: Applying the Logistic Model.

1. Solutions

(a) r2 = 0.8258, k = 0.0564 and Q = 78, 529.3. The model predicts peak production in
the year 2002. The model predicts peak production to occur when 39,264 million
short tons have been extracted. The model predicts peak production will take place
in approximately 2002 and have a value of dy

dt
= 1, 107.8. The data shows a bimodal

distribution for annual production. The first local maximum in production, 1127.7
million short tons, occurs in year 2001. The second local maximum in production,
1,162.7 million short tons, occurs in 2006.

(b) Since 52, 996 million short tons has been mined through 2016 and our model pre-
dicts that 78, 529.3 will be the total amount recovered, then 78, 529.3 − 52, 996 =
25, 533.3 remains to be recoverd.

List of Tables

1 US Coal Production 1997-2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 US Coal Production Two-Year Running Average . . . . . . . . . . . . . . . . 8
3 US Electricity Generation 2011-2013 . . . . . . . . . . . . . . . . . . . . . . 11
4 US Electricity Generation 2014-2016 . . . . . . . . . . . . . . . . . . . . . . 11
5 US Quarterly Average Residential Natural Gas Price 2011-2016 . . . . . . . 13
6 Monthly US Electricity Produced by Hydroelectric 2013-2016 . . . . . . . . . 15
7 Heating Oil Average Monthly Retail Prices . . . . . . . . . . . . . . . . . . . 19
8 Weighted Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9 Trend Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10 US Electricity Generated by Wind 2008-2012 . . . . . . . . . . . . . . . . . . 29
11 US Electricity Generated by Wind 2013-2017 . . . . . . . . . . . . . . . . . . 29
12 Sample Annual Oil and Gasoline Prices 1945-2015 . . . . . . . . . . . . . . . 32
13 Average Weekly Gasoline Prices Jan-Apr 2005 . . . . . . . . . . . . . . . . . 37
14 One week ahead gasoline price forecasts May 2005 . . . . . . . . . . . . . . . 40
15 Sample Weekly Oil and Gasoline Prices Jan-Apr 2005 . . . . . . . . . . . . . 40
16 Average Weekly Oil and Gasoline Prices May-June 2005 . . . . . . . . . . . 41
17 1-week ahead forecasts and forecast errors May-June 2005 . . . . . . . . . . 42
18 1-week ahead forecasts and forecast errors May-June 2005 . . . . . . . . . . 43
19 US Oil Production 1930-1971 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
20 US Coal Production 1971-1990 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A R Instructions

To assist in using R for this module, we include R instruction used to produce selected parts
of the discussion. These instructions can then be applied to work the class and students
activities.
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R in Topic 3. For the Class Activity: Using Exponential Trends, we assume the gasoil48 13.csv
file containing the sample average annual oil and gasoline prices from 1945-2015 as given in
Table(12) is stored in the folder Reconnect 2017 where row 1 contains column labels, column
1 lists the dates 1948 through 2013 in increments of five years, column 2 has the annual oil
prices, column 3 has the annual gasoline prices for the years listed, we read the data and
form the time series for gasoline prices using R:

> GasOil4813<-read.table("/Reconnect 2017/gasoil48_13.csv",header = TRUE,sep = ",")

> Gas4813.ts<-ts(GasOil4813[,3], st=c(1948,1), end=c(2013,1), fr=.2)

We take time T = 0 in the year 1945. Since the first value in the table is from 1948, we form
the time sequence, T = 3, 8, ...68 corresponding to the five year time increments in the data
and transform the data using the log() function. Finally, the linear regression code used to
produce and store the result in Model2 uses the R function lm().

> T <- seq(3,68,5) ##we assume T=0 in 1945.

> LogGas4813 <- log(Gas4813.ts)

> Model2 <- lm(LogGas4813~T)

> summary(Model2)

Call:

lm(formula = LogGas4813 ~ T)

Residuals:

Min 1Q Median 3Q Max

-0.37732 -0.18631 -0.02477 0.22001 0.41805

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.751687 0.146587 -11.95 5.07e-08 ***

T 0.040544 0.003591 11.29 9.50e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2708 on 12 degrees of freedom

Multiple R-squared: 0.914,Adjusted R-squared: 0.9068

F-statistic: 127.5 on 1 and 12 DF, p-value: 9.504e-08

To produce Figure(3), we first assume the weely gasoline and oil prices file, Gaswkly1995.csv,
is stored in the folder Reconnect 2017 where row 1 contains column labels, column 1 has
the average weekly gasoline prices, and column 2 has the weekly oil prices from the first
week in 1995. After forming the time series we use the plot() and decompose() functions
in R to produce the figure showing the time series, trend, weekly adjustments and random
component from 1995 through 2000. The code is

> GASOILWK1995 <- read.table("/Reconnect 2017/Gaswkly1995.csv",header = TRUE,sep = ",")
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> GASWK1995.ts <- ts(GASOILWK1995[,1], st=c(1995,1), end=c(2000,52), fr=52)

> plot(decompose(GASWK1995.ts))

To produce the model estimate in (16), we first produce the seasonally adjusted data
and then use regress the model variable against the first and second time lag of the variable.
These operations are completed with the following code.

> GASWK1995.decom <- decompose(GASWK1995.ts)

> GASWK1995.seas <- window(GASWK1995.decom$seasonal, st=c(1995,27), end=c(2000,25))

> GASWK1995.mod <- window(GASWK1995.ts, st=c(1995,27), end=c(2000,25))

> GASWK1995.seasadj <- GASWK1995.mod - GASWK1995.seas

> library(dynlm)

> Model1 <- dynlm(GASWK1995.seasadj ~ L(GASWK1995.seasadj,1) + L(GASWK1995.seasadj,2))

> summary(Model1)

Time series regression with "ts" data:

Start = 1995(29), End = 2000(25)

Call:

dynlm(formula = GASWK1995.seasadj ~ L(GASWK1995.seasadj, 1) +

L(GASWK1995.seasadj, 2))

Residuals:

Min 1Q Median 3Q Max

-0.031476 -0.006856 -0.001277 0.005045 0.056301

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.004049 0.007258 -0.558 0.577

L(GASWK1995.seasadj, 1) 1.505480 0.057165 26.336 < 2e-16 ***

L(GASWK1995.seasadj, 2) -0.501126 0.058054 -8.632 6.72e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.01229 on 254 degrees of freedom

Multiple R-squared: 0.9907,Adjusted R-squared: 0.9907

F-statistic: 1.36e+04 on 2 and 254 DF, p-value: < 2.2e-16

Notice how we used the window() function in R to adjust the original time series data to
have the same dimension as the trend and random components produced by decompose().
The trend and random components are missing 26 weeks of data at the beginning and end
since decompose() uses the centered moving average to produce the trend. However, we
could have gotten away with not redimensioning if all we were interested in was producing
the seasonally adjusted data.

For the shorter 2005 seventeen week time series discussion used for forecasting, we assume
the weely gasoline and oil prices file, Gasoilwkly2005.csv, is stored in the folder Reconnect
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2017 where row 1 contains column labels, column 1 has dates, column 2 has the aver-
age weekly gasoline prices, and column 3 has the weekly oil prices from the first week in
2005. The following code produces the parameter estimates in equation (19) as well as the
Figure(7),Figure(8),and Figure(9).

> Gasoilwkly2005 <- read.table("/Reconnect 2017/Gasoilwkly2005.csv",header = TRUE,sep = ",")

> Gaswkly2005.ts<-ts(Gasoilwkly2005[,2], st=c(2005,1), end=c(2005,52), fr=52)

> Gaswkly05Q1<-window(Gaswkly2005.ts, st=c(2005,1), end=c(2005,17))

> T <- seq(1,17,1) #T is the week number

> Model <- lm(Gaswkly05Q1 ~ T)

> summary(Model)

Call:

lm(formula = Gaswkly05Q1 ~ T)

Residuals:

Min 1Q Median 3Q Max

-0.07777 -0.03486 0.01282 0.02002 0.07665

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.692882 0.022272 76.01 < 2e-16 ***

T 0.032098 0.002174 14.77 2.42e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0439 on 15 degrees of freedom

Multiple R-squared: 0.9356,Adjusted R-squared: 0.9314

F-statistic: 218.1 on 1 and 15 DF, p-value: 2.42e-10

> Trend <- predict(Model)

> ts.plot(cbind(Trend, Gaswkly05Q1), lty = 1:2)

> Model.res <- Model$res

> ts.plot(Model.res) #Left part of Figure

> acf(Model.res) #Right part of Figure

> pacf(Model.res)

The parameters estimates obtained in equation (20) were produced by least squares linear
regression in EXCEL. In R, one could also use the ar() function.

> ar(Model.res,2)

Call:

ar(x = Model.res, aic = 2)

Coefficients:

1 2

0.9663 -0.4897
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The result gives slightly different parameter estimates. Since the lag 1 parameter is so close
to unity, the statistics showing the accuracy of the estimate may not themselves be accurate.
In many texts, it is suggested that the first difference be taken 5yt = (1−B)yt = yt − yt−1

and then modeled. In our case we would model εt − εt−1. The R-code for taking the first
difference and naming the resulting time series FirstDiff is,

> FirstDiff <- diff(Model.res, 1).

In any case, the exercises show a different and more accurate forecasting model.
For Topic Four Assuming the .csv file containing US oil production data from 1859 to

2016 is stored in the folder Reconnect 2017 where row 1 contains column labels, column 3
has annual production data, column 4 has cumulative production data, and column 5 has
the relative rate, ∆y

y
, data, we read the data and form the three time series using R:

> OilProdAnn<-read.table("/Reconnect 2017/US_Oil_Prod.csv",header = TRUE,sep = ",")

> OilProdAnn1859.ts<-ts(OilProdAnn[,3], st=c(1859,1), end=c(2016,1), fr=1)

> OilProdCum1859.ts<-ts(OilProdAnn[,4], st=c(1859,1), end=c(2016,1), fr=1)

> OilProdCumRelRate1859.ts<-ts(OilProdAnn[,5], st=c(1859,1), end=c(2016,1), fr=1)

We use the window function to produce subsets of the time series from 1931 to 1950.

> OilProdAnn1931<-window(OilProdAnn1859.ts, st=c(1931,1), end=c(1950,1))

> OilProdCum1931<-window(OilProdCum1859.ts, st=c(1931,1), end=c(1950,1))

> OilProdRelRate1931<-window(OilProdCumRelRate1859.ts, st=c(1931,1), end=c(1950,1))

The linear regression code that produces the result in 27 is given by:

> Model<-lm(OilProdRelRate1931~OilProdCum1931)

> summary(Model)

Call:

lm(formula = OilProdRelRate1931 ~ OilProdCum1931)

Residuals:

Min 1Q Median 3Q Max

-0.0059862 -0.0016413 -0.0000727 0.0011557 0.0068070

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.472e-02 2.345e-03 27.605 3.48e-16 ***

OilProdCum1931 -3.530e-04 8.755e-05 -4.032 0.000782 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 0.00325 on 18 degrees of freedom

Multiple R-squared: 0.4746,Adjusted R-squared: 0.4454

F-statistic: 16.26 on 1 and 18 DF, p-value: 0.000782

One way to produce the plots shown in Figure (16) is to store the predicted model values in
a .csv file. In our case, we store the predicted values and data values from 1931 to 2015 in
the file where columns 2 and 3 contain the annual and cumulative production, respectively,
and columns 4 and 5 contain the predicted cumulative and annual production, respectively.

US_Oil_Model.csv

>OilProdModel<-read.table("/Reconnect 2017/US_Oil_Model.csv",header = TRUE,

sep = ",")

> OilProdAnn31to15.ts<-ts(OilProdModel[,2], st=c(1931,1), end=c(2015,1), fr=1)

>OilProdCum31to15.ts<-ts(OilProdModel[,3], st=c(1931,1), end=c(2015,1), fr=1)

> OilProdModelCum.ts<-ts(OilProdModel[,4], st=c(1931,1), end=c(2015,1), fr=1)

> OilProdModelAnn.ts<-ts(OilProdModel[,5], st=c(1931,1), end=c(2015,1), fr=1)

> ts.plot(cbind(OilProdModelAnn.ts, OilProdAnn31to15.ts),lty=1:2,

ylab="Billion Barrels per Year")

>ts.plot(cbind(OilProdModelCum.ts, OilProdCum31to15.ts),lty=1:2,

ylab="Billion Barrels")

B Excel Instructions

It might be helpful to know how to use Excel to create some of the descriptive representations
as well as the time series models. The following begins with a set of instructions for creating
box-and-whisker plots, dot plots, bar graphs, scatter plots (regression), and time series plots.
This is followed by instructions for constructing time series models with Excel.

Creating Box-and-Whisker Plots in Excel

(a) In a vertical column of data, scroll down to the end of the data set. Click on the
cell two rows below and one row to the left of the data set. In that cell and the four
cells below it, create a vertical column with the labels: Minimum, 1st Quartile,
Median, 3rd Quartile, and Maximum.

(b) Now click on the cell two rows directly below the end of the data set (it will be one
column to the right of the cell labeled Minimum. Type the Excel command

= min(

leaving the left parenthesis open for now. In the cell, Excel will display the set of
arguments that are to be placed within the parentheses; in this case it is waiting for
one argument the data set over which the minimum is to be taken. With the cell
dialogue open, click and drag from the first data entry to the last data entry, and then
release the mouse (or you can type something like B2:B20, if the data set appears in
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the cells from B2 through B20). Press ENTER and the cell will produce the minimum
value of the data set as its answer.

(c) The highlighted cell should now be the one directly under the minimum (to the right
of the cell labeled 1st Quartile). In this cell, type the command

= quartile(dataarray, quartile);

that is = quartile(B2 : B20, 1) if the data appears in cells B2 through B20 (dragging
the cursor through the data set will work as well). Press ENTER and the cell will
produce the first quartile value of the data set as its answer.

(d) Repeat this process for each of the remaining values typing in the respective commands
for the median, third quartile, and maximum:

= median(dataarray)

= quartile(dataarray, 3)

= max(dataarray)

(e) Repeat this process for each data set. If the data sets are vertically side-by-side, rather
than typing each command over and over again, Excel has the ability to easily copy
and paste commands and scripts with each copied command carrying out the same
instructions on cells proportionally situated relative to the initial cells outlined in the
original command. Therefore, highlight the five descriptive values under the first data
set. In the lower right hand corner will appear a small, solid square. Move the cursor
over this square until it changes from a wide cross to a stick cross. Click and drag the
mouse to the right (or left) of the original column. Each of the original commands will
be copied in each additional column highlighted, doing the same calculations on each
respective data set relative to the first data sets position.

(f) Now that the five descriptive values are calculated, we will use the Excel graphing
tools to create box-and-whisker plots. There is no direct Excel command that does
this, so we will use our imaginations. Two rows below the five descriptive statistics,
in the column that contains the first data set, type an equals sign (=); then click on
the cell that contains the minimum value. Note that when you do this the column-row
identification of that cell appears in the new cell. Press ENTER and the minimum
value will again appear.

(g) The cell below it should now be highlighted. In that cell, type the command =B23-
B22; that is, subtract the minimum value from the first quartile value, whatever the
cell labels happen to be. Press ENTER.

(h) Repeat this process subsequently subtracting each of the following in each respective
cell:

Median - First quartile value

Third quartile value Median

Maximum Third quartile value
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(i) Copy and paste each of these values in each respective column which contains another
data set.

(j) Highlight each of these newly calculated values over several (3 or 4) data sets.

(k) In the Insert menu, click the Column option in the Charts submenu. Then choose
the Stacked Column option (not the 100% Stacked Column option).

(l) Several stacked columns should appear in an Excel graphic. There should be the same
number of columns as data sets. If not, the rows and columns have to be switched.
This can be done easily by choosing the Switch Row/Column option in the Design
submenu in the Chart Tools menu.

(m) Click on the top row of rectangles in the stacked columns. To make these invisible in
the Chart Tools menu, select the Format submenu and choose the No Fill and No
Outline options in the Shape Fill and Shape Outline menus.

(n) Repeat this for the bottom rectangles.

(o) Now click on the remaining top visible rectangles. In the Chart Tools menu, select
the Layout submenu. In the Layout submenu. In the Error Bars menu, select the
More error bars options.

(p) Choose the Plus and Cap options. Then select the Custom option and click on the
Specify Value icon. In the Positive Error Value bar select the last row of values
representing Maximum Third Quartile. Leave the Negative Error Value bar
alone.

(q) Now click on the remaining bottom visible rectangles. In the Chart Tools menu,
select the Layout submenu. In the Layout submenu. In the Error Bars menu,
select the More error bars options.

(r) Choose the Negative and Cap options. Then select the Custom option and click on
the Specify Value icon. In the Negative Error Value bar select the row of values
representing First Quartile- Minimum. This will be the second calculated row.
Leave the Positive Error Value bar alone.

(s) All that remains is to make the inside rectangles of uniform color (usually the median
is not displayed in box-and-whisker plots). Highlight each row of rectangles, choose
the No Outline option and choose an appropriately light color. Repeat this for the
remaining set of rectangles, choosing the same color.

(t) You should now have side-by-side box-and-whisker plots. If a median line is desired,
simply choose the appropriate border option for one of the rows of rectangles.
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Creating Dot Plots in Excel

This is a much easier process. Dot plots are most useful with discrete data sets. Again, in a
blank area of the worksheet, vertically list each distinct value that appears in the data set.
In each cell to the right of the value use either of the nested commands:

= rept(., countif(dataarray, value))

= rept(., countifs(dataarray1, value1, dataarray2, value2, ))

The rept(textcriteria, numberoftimes) command converts a numerical value to the symbol
given that number of times. The countif(dataarray, value) counts the number of times that
value appears in the given data array.

A bar can be drawn between the values and the dots by placing the appropriate borders
between the two columns. A side-by-side dot plot is easily created by placing the nested
commands on the opposite side.

Creating bar charts and bar graphs in Excel

The Charts menu in Excel has the capacity to directly create bar charts and bar graphs.
Highlighting the appropriate columns, going to the Charts menu within the Insert menu,
and selecting the appropriate options is all that is needed.

Creating Scatter Plots and Time Series Plots in Excel

To create a standard two-dimensional (regression) plot in Excel, we use scatterplots. This
is a relatively easy process in excel. Although there are several ways this can be done,
these instructions will highlight the most direct way (without getting into too much chart
manipulation).

(a) Place the x values (independent variable, horizontal axis) and y values (dependent
variable, vertical axis) side by side in two columns with the x values in the left column
and the y values in the right column. (This is the default mode for Excel scatter plots.)

(b) Highlight both columns. Then go into the Charts menu within the Insert menu, and
select the Scatter drop down menu. In this menu select the Scatter with Scatter
with only Markers option. (You will add a trendline later.) If you highlight the title
or caption, this will automatically appear as the title in the chart.

Note: To create a time series plot in Excel, in the Scatter drop down menu se-
lect the Scatter with Straight Lines and Markers option. The result will have
the appearance of a time series plot.

(c) Now it is a matter of adjusting the scales to make the graph a bit more pleasing to the
eye. To do this, right click on appropriate parts of the graph and select the Format
option in the menu that appears. You can change plot shapes, sizes, scales, etc. Click
on the axes to adjust the axis scale so the dots are well proportioned in the graph area.
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(d) To add a trendline, right click on any data point. Select Add trendline from the
menu. Click on Add equation as well. A trendline along with the corresponding
equation will appear.
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