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Note to teachers:  Teacher notes appear in dark red in the module, allowing faculty to pull 

these notes off the teacher version to create a student version of the module.   

 

Summary of the Module 

The MD5 Message-Digest Algorithm (MD5) is one of the current standards for data integrity 
verification for law enforcement and digital forensics.  The algorithm uses a cryptographic 
function called a hash to produce a 32-character “word” or string from any type of data.  This 
“word” or string is a nearly unique hexadecimal representation of the data.  Law enforcement 
uses these unique signatures to prove the existence of particular data as well as proof that data 
has not been compromised. This module begins with modular arithmetic, binary and 
hexadecimal expressions, and bit operations in order to motivate the mathematics and the 
logic behind hash functions and the MD5 algorithm.  The algorithm is considered with both a 
cryptographic and forensic lens.  The module concludes with a discussion of current trends in 
digital verification and cybersecurity. 

Target Audience: 

The module can be adapted or divided into sub-modules that are appropriate for many levels of 
mathematics and computer science. Sections 1-5 cover applicable background material. Section 
6 introduces the concept of hashing. Section 7 provide specific background material for MD5. 
Sections 8 and 9 present the MD5 algorithm and related topics. Section 10 discusses future 
avenues for hashing. 

Prerequisites: 

There are none.   
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Section 1: Modular Arithmetic 

The basics of the MD5 algorithm, coding systems, and other data integrity verification methods, 
all start with the same building blocks. The roots of these methods lie in both mathematics and 
computer science.  In these introductory sections, computer science topics like bits, bytes, and 
binary, as well as mathematical topics like modular arithmetic, base-two arithmetic, and check 
sums are discussed.  Let’s start with modular arithmetic. 
 
To motivate the idea of modular arithmetic, consider your watch.  If your watch says 5:00 and 
you have an appointment in 38 hours, what time will your watch read when the appointment 
starts?  Or perhaps it is 11:00 and you have an exam in 42 hours.  What time will your watch 
read as you sit down for the exam? How do we determine these times? What methods could be 
employed? 
 
There are multiple ways to solve the above questions.  One could think in either a 24 hour or a 
12 hour day.  Let’s consider the fact that a watch cycles every 12 hours.  If it is 5:00, then in 12 
hours the watch will read 5:00 again.  In 24 hours, the clock will read 5:00.  In 36 hours, the 
clock will read 5:00.  Since we are interested in 38 hours, then the watch will read 7:00 (38 
hours is two more hours than 36 hours). 
 
Now, if the world decided that one day was 5 hours long, then a watch might have the digits 1, 
2, 3, 4, and 5.  Let’s explore some examples in this 5-hour-day world. 
 
Example 1.1:  
 
It is 1:00. What time will your watch read in 13 hours if one day is 5 hours long? 
 
 Answer: In this new world, 13 hours is equal to 2 days (each five hours) and 3  
   additional hours. We can write this mathematically as 13 = 5 ∗ 2  +  3.   
   So, the watch will need to move 3 hours and it will read 4:00. 
 
Your turn! 
 
It is 5:00.  What time will your watch read in 15 hours if one day is 5 hours long? 
 
 Answer:  Since 15 = 5 ∗ 3, 15 hours is exactly 3 days later and the time will be the  
   same: 5:00. 
 
These are examples of modular arithmetic.  We use it every day and we unknowingly interact 
with it every day through businesses, technology, and internet security. 
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Equivalence and Modular Arithmetic 
 
Returning to the normal world with 24 hours days and the numbers 1-12 on a watch, we will 
discuss times that look the same on a watch face.  For example, whether it is 1:00 or 13:00 both 
will appear as 1:00 on a watch face.  Similarly, 1:00, 13:00, 25:00, and -11:00 are all same as 
1:00 on a watch face. 
 
Note:   

1 = 12 ∗ 0 +  1 
13 =  12 ∗  1 +  1 
25 =  12 ∗ 2 +  1 

−11 =  12 ∗ −1 + 1 
 
All of these numbers have a remainder of 1 when divided by 12.  Modular arithmetic can be 
thought of as “remainder arithmetic”.  So, when we work “mod 12” meaning “watch face 
mathematics”, every number is said to be equivalent to its remainder when divided by 12.  We 
should say that 1, 13, 25, and -11 are all equivalent to 1. Another way to see if two numbers are 
equivalent mod 12 is to check to see if the difference is divisible by 12. 
 
So, 3:00, 15:00, and 27:00 are all equivalent mod 12 because they all have a remainder of three 
when divided by 12. Also 3 − 27 =  −24 and −24 is divisible by 12, so we can say that 3 and 
27 are equivalent “mod 12.”  
 
Note, -9:00, seems to makes little sense in the concept of time and watches, but it addresses 
subtracting time.  Here -9:00, would also be equivalent to 3:00 because −9 =  12 ∗ (−1) +  3 

and −9 –  3 =  −12 which is divisible by 12.  Since grade school, we have known that 
remainders are always non-negative and always less than the original divisor. Formally, we 
state this idea as follows. 
 
For any pair of integers (𝑚, 𝑛) we can write 𝑚 =  𝑛 ∗ 𝑞 +  𝑟 where 0 <  𝑟 <  𝑛 − 1, and q is 
called the quotient and must be an integer. We can restate this and say that r is an element in 
the set {0, 1, 2, … , 𝑛 − 1}.  The set {0, 1, 2, … , 𝑛 − 1} defines equivalence classes, as all the 
numbers with the same remainder will be in the same class.  Numbers in the same class are 
equivalent.  Sometimes we will call the set equivalence classes mod n.   
 
This means there are finitely many equivalent classes and all integers fit into one of the classes.  
You can determine the equivalence class of an integer mod n by asking, “What is the remainder 
when this number is divided by n?” Again, we can check to see if two numbers, a and b, are 
equivalent mod n if they have the same remainder or if (𝑎 − 𝑏) is divisible by n. 
 
Problems working with  modulus 7, call it  mod 7.  Now the remainders (the equivalence 
classes) are {0, 1, 2, 3, 4, 5, 6}.   First, we determine which classes certain numbers belong.  
Use the notation:  
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13 ≡  6 mod 7. 
 
Read the statement as “13 is equivalent to 6 mod 7”.  We know this is true because 
13 =  7 ∗ 1 +  6 and the ≡ symbol means equivalent.  
 
Example 1.2: 
 
What is 24 equivalent to mod 7? 
 
 Answer: 24 =  7 ∗ 3 + 3 so 24 ≡  3 mod 7. So 24 is equivalent to 3 mod 7. 
 
Your turn! 
 
What is -7 equivalent to mod 7? 
 
 Answer:  −7 =  7 ∗ (−1)  +  0 so −7 ≡ 0 mod 7. 
 
Example 1.3: 
 
What is 24 + (−7)5 equivalent to mod 7?  Note: Before performing any arithmetic, replace 
values with their mod 7 equivalent. 
 
 Answer: We could solve this problem by calculating each pieces.  Since 
    (−7)5   =  −16807, then we can say  

   24 +  (−7)5  =  24 +  (−16807)  =  −16783 =  7 ∗ (−2398)  +  3, 
so the expression is equivalent to 3 mod 7. 

   
   However, we really should use the fact from the previous example that -7 
   is equivalent to 0 mod 7. We also know that 24 ≡  3 mod 7 (because  
   24 =  7 ∗ 3 + 3). A more efficient answer is to say,  
   24 +  (−7)5  ≡  3 +  05  mod 7 ≡ 3 mod 7. 

 
Your turn!  
 
Solve the following examples by replacing values with its mod n equivalent before doing any 
arithmetic. Do not use a calculator. 
 
What is 72  +  (5 ∗  57) equivalent to mod 48?  
 
 Answer:  49 + (5 ∗ 9) mod 48 ≡ 1+(45) =46. 
 
What is 43 + 32 + 1781 equivalent to mod 4? 
 
 Answer:  03 + 9 + 181 = 10 mod 4 ≡ 2. 
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Example 1.4: 

 
What is 92000 equivalent to mod 80?  (Hint: Write 2000 as 2 ∗ 1000 and simplify.) 
 
   Answer: This problem uses some exponential properties. So, 
   92000 =  92∗1000 = (92)1000 = 811000 ≡  11000 mod 80 ≡ 1 mod 80. 
 
Your turn! 
 
What is (𝑥 + 𝑦)2 equivalent to mod 2?  (Hint: Multiply (𝑥 + 𝑦)2 out.) 
 
 Answer: (𝑥 + 𝑦)2 = 𝑥2 +  2𝑥𝑦 + 𝑦2 ≡ 𝑥2 +  𝑦2 mod 2. 
 

Homework Exercises Section 1 
 

1. It is 8:00.  What time will your watch read in 15 hours if one day is 9 hours long? 

2. It is 3:00.  What time will your watch read in 9 hours if one day is 5 hours long? 

3. What is 82 equivalent to mod 7? 

4. Solve the following examples by replacing values with its mod n equivalent before doing 

any arithmetic. Do not use a calculator. 

a. What is 62  +  (36 ∗  55) equivalent to mod 35?  

b. What is 43 + 302 + 1681 equivalent to mod 5? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 

 

Section 2: The Real World of Modular Arithmetic: Check Digits and Check Sums 
 
UPCs, ISBNs, and bank accounts numbers are all examples of modular arithmetic in the real 
world.  MD5 and other internet security systems like RSA also use modular arithmetic to 
disguise, simplify, and verify information.   
 
A UPC (Universal Product Code) is a 12 digit number or barcode that encodes manufacturer 
information, product information, and a check digit.  A check digit is an additional number at 
the end of the string of digits that can verify if a mistake was made in the previous 11 digits.  As 
we will see later, MD5 also adds digits to the end of a given string.  The following is a general 
example of a UPC. 
 

UPC = 𝑑1𝑑2𝑑3𝑑4𝑑5𝑑6𝑑7𝑑8𝑑9𝑑10𝑑11𝑐 
 
Here 𝑑1, 𝑑2, 𝑑3, … , 𝑑11 encode the product information and c is the check digit. All the digits 
must be 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. 
 
The system used to both determine the check digit and to verify that the values of 𝑑1 through 
𝑑11 are correct alternately multiplies by 3 and 1, adds them together, then determines the 
value mod 10.  First, the following is calculated using the product information: 
 

3𝑑1  +  1𝑑2  +  3𝑑3  +  1𝑑4  + 3𝑑5  +  1𝑑6  +  3𝑑7  +  1𝑑8  +  3𝑑9  + 1𝑑10  +  3𝑑11 
 
Then, the check digit, c, is chosen such that  

 
3𝑑1  +  𝑑2  +  3𝑑3  +  𝑑4  + 3𝑑5  +  𝑑6  +  3𝑑7  +  𝑑8  +  3𝑑9  +  𝑑10  +  3𝑑11 + 𝑐 ≡ 0 𝑚𝑜𝑑 10 
 
Example 2.1: 
 
Suppose a product’s information can be encoded in the 11 digit string 03600028510.  When the 
UPC is made, the new code will be 03600028510c.  Keep in mind it that c must be a single digit 
and the sum 3𝑑1  + 𝑑2  +  3𝑑3  + 𝑑4  + 3𝑑5  +  𝑑6  +  3𝑑7  +  𝑑8  +  3𝑑9  +  𝑑10  +  3𝑑11 + 𝑐 
must be equivalent to 0 mod 10. What should c be?  
 
 Answer: We can calculate most of the sum above given the known digits and  
   leaving the check digit as c.  

          3(0) + (3) + 3(6) + 0 + 3(0) + 0 + 3(2) + 8 + 3(5) + 1 + 3(0) + 𝑐 
            = 0 + 3 + 18 + 0 + 0 + 0 + 6 + 8 + 15 + 1 + 0 + 𝑐  
            = 51 +  𝑐  

For 51 + 𝑐 to be equivalent to 0 mod 10, c must be 9 because  
  51 + 9 =  60 ≡ 0 mod 10. We can ask ourselves what value of c makes  
  the total a multiple of 10 or we can find 51 + 𝑐 mod 10≡ 1 + 𝑐 mod 10 

and again c must be 9.  
Your turn!  
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Is 036000281509 a valid UPC? 
 
 Answer:  3(0) + 3 + 3(6) + 0 + 3(0) + 0 + 3(2) + 8 + 3(1) + 5 + 3(0) + 9 
   = 0 + 3 + 18 + 0 + 0 + 0 + 6 + 8 + 3 + 5 + 0 + 9 
   = 52 ≡  2 mod 10. 
 
   No, this is NOT a valid UPC because the sum is 2 and not 0 mod 10. 
 
 
Bank Accounts are typically 10 digits (9 digits and 1 check digit): 
 

𝑛1𝑛2𝑛3𝑛4𝑛5𝑛6𝑛7𝑛8𝑛9𝑐. 
 
The check digit is determined and the code verified in in a different way than UPC codes.   Here 
they multiply by 7, 3, and 9 alternately. 
 

7𝑛1  +  3𝑛2  +  9𝑛3  +  7𝑛4  +  3𝑛5  +  9𝑛6  +  7 𝑛7  +  3𝑛8  +  9𝑛9  +  𝑐 ≡  0 𝑚𝑜𝑑 10 
 
Example 2.2: 
 
Compute the check digit for following bank account: 211872438c. 
 
 Answer: We can calculate most of the sum above given the known digits and  
   leaving the check digit as c. 
 
   7(2) + 3(1) + 9(1) + 7(8) + 3(7) + 9(2) + 7(4) + 3(3) + 9(8) + 𝑐 
   = 14 + 3 + 9 + 56 + 21 + 18 + 28 + 9 + 72 + 𝑐 
   = 230 + 𝑐 
 

 For this to be a bank account number, 230 +  𝑐 must be equivalent to  
0 mod  10.  So 𝑐 = 0.  

 
Your turn! 
 
Is the following a correct bank code: 0123456789?  
 
 Answer:  7(0) + 3(1) + 9(2) + 7(3) + 3(4) + 9(5) + 7(6) + 3(7) + 9(8) + 9  

 =  0 + 3 + 18 + 21 + 12 + 45 + 42 + 21 + 72 + 9 
    =  243 ≡ 3 mod 10 
 
   This is not a valid bank code because the sum is 3 and not 0 mod 10. 
 
Suppose you are given the bank account 211872d461?  Can you uniquely determine d?  
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 Answer:  7(2) + 3(1) + 9(1) + 7(8) + 3(7) + 9(2) + 7(𝑑) + 3(4) + 9(6) + 1  
    = 14 + 3 + 9 + 56 + 21 + 18 + 7𝑑 + 12 + 54 + 1 
                          = 188 + 7𝑑 ≡ 8 + 7𝑑 mod 10 
 
   Since this is a bank account, 8 + 7𝑑 ≡ 0 mod 10.  So d = 6 because  

 8 + 7(6) = 50 ≡ 0 mod 10. 
 
Extended Activity A: Consider some reasons that the banks might use 7, 3, and 9 in their 
calculations when working mod 10 but not use 2,4,5, etc? 
 
Notes/Hints: 

1. Consider if the previous problem came down to solving 8 + 4𝑑 ≡ 0 mod 10 instead 
of 8 + 7𝑑 ≡ 0 mod 10. 

2. The main idea here is the idea of relatively prime numbers.  In the example, 7, 3 and 
9 are all relatively prime to 10.  

3. See the Appendix under Extended Activity A for more details. 
 

Homework Exercises Section 2 
 

1. Compute the check digit for following bank account: 311272437c. 

2. Is 725439104708 a valid UPC? 
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Section 3: Binary and Bits 

 
While modular arithmetic is a large part of many cryptographic and security protocols, we also 
have to remember that all this information is communicated in “computer language.”  
Computers are incredibly complicated machines with multi-layered programs, systems, and 
functions, but under it all are small switches with two settings: “on” and “off” or “0” and “1”.  
This is why we briefly discuss binary and bits. The word bit is a shorthand for binary digit. 
 
Binary Notation and Expansion 
 
We live in a decimal number system (sometimes called denary), meaning we have a base-ten 
system. We use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and place value to determine the value of a 
string of digits.  We see 145.2 and we know this means 1 ∗ 102  +  4 ∗ 101  +  5 ∗ 100  +  2 ∗
10−1.  A computer uses binary (base-two).  Binary has the digits 0 and 1 and also uses place 
value to determine the value of a string of digits.  We will use the notation 𝑋𝑋𝑋2 to denote a 
number is written in base 2.  If a number is in base 10, then we are not going to write 𝑋𝑋𝑋10 
and instead we will just write 𝑋𝑋𝑋. 
 
Converting a value in binary into a decimal number is a matter of expanding using place value. 
Visually, we can write 10012 in a place value table and then calculate. 
 

23 22 21 20 
1 0 0 1 

 
So, 10012 =  1 ∗ 23  +  0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20  =  8 + 1 =  9.    
 
However, we need to have a better strategy to make a decimal number into its binary 
representation.  It is a very good exercise because it reminds us about the basics and 
foundations of the number system, place value, and grouping.  When we learned the base-ten 
system, we needed to know to group by ones (100), tens (101), or hundreds (102), etc.  In 
binary, or base-two, we group by ones (20), “twos” (21), “fours” (22), “eights” (23), etc.  
 
Suppose we are asked to describe 140 as a base-ten value.  We see this as one hundred (102), 
four tens (101), and zero ones (100). We start by looking for the largest power of ten that fits 
into the number.  However, in binary, 140 is one 27 (128), zero 26 (64), zero 25 (32), zero 24 
(16), one 23 (8), one 22 (4), zero 21 (2), and zero 20.  We write this as 100011002.   We 
determine the expansion by first finding the largest power of two that could fit into the 
number.  
 
First, 128 =  27and 256 =  28, so 27 is the largest power of two less than 140.  This leaves 
140 − 128 =  12 remaining to be built from powers of two.  The next largest power of two 
that fits in 12 would be 8 = 23 and we have 12 − 8 = 4 remaining.  Since 4 is a power of two 
(22), we are done!  
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27 26 25 24 23 22 21 20 
 1 0 0 0 1 1 0 0 

=100011002 
Example 3.1: 
 
Convert 100012 into base-ten. 
  
 Answer: Like we saw in the original example, we can expand using place value. So, 
   100012 = 1 ∗ 24 + 0 ∗ 23  +  0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 16 + 1 = 17  

 
Your turn! 
 
Convert 1112 into base-ten. 
 
 Answer:  1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 4 + 2 + 1 = 7  

 
Convert 001012 into base-ten.  
 
 Answer:  0 ∗ 24 + 0 ∗ 23  +  1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 4 + 1 = 5 
 

 Note: It should seem odd to have 00 in the leftmost place; however, 
 sometimes this will happen in binary, especially when the computer 
forces  the user to always use a certain number of bits. 

 
Convert 1012 into base-ten.  
 
 Answer:  1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 4 + 1 = 5 
 
Example 3.2: 
 
Convert 25 into binary. 
 
 Answer: Recall, we need to find the highest power of two that fits in 25.  The  
   largest power is 24 = 16. We know 25 − 16 =  9, so we will need an  
   additional 8 (23) and a 1 (20). So,  
   25 =  16 + 8 + 1 =  24 + 23 + 20  =  110012. 

 
Your turn! 
 
Convert 255 into binary. 
 
 Answer:  255 =  128 + 32 + 16 + 8 + 4 + 2 + 1   

            = 26 + 25 + 24 + 23 + 22 + 21 + 20  =  11111112  
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Convert 48 into binary using 8 binary digits (bits). 
 
 Answer:  46 =  32 +  8 + 4 + 2 =  25 + 23 + 22 + 21 = 001011102 
 
Extended Activity B: There are numerous algorithms to multiply two numbers: the standard 
algorithm, area method, lattice methods, distribute/rewriting, etc.  There is also a method that 
uses the binary expansion of a number (behind the scenes) to do multiplication.  Here are two 
examples. 
 
The Algorithm:  

1. To multiply m and n, create two columns.  In one column, start with m, the entry below 
is the entry above divided by 2. So 𝑚, 𝑚/2, 𝑚/2/2, etc. Stop when the value is 1.  If any 
entry is odd, then we use the floor function (take the integer less than or equal to the 
value). For example, we would say 7/2 = 3.  In the other column, multiply n by 2 and 
each row will be twice the row before it. Stop when the value in the first column is 1.  

2. Cross out any row in the table where there is an even value in the leftmost column. 
3. Add any remaining values in the rightmost column, this is mn. 

 
Suppose we wish to multiply 16 and 31.  We will create two columns. 

16 31 

8 62 

4 124 

2 248 

1 496 

 
Cross out all even values in the left-most column and those matched in the other column. 
 

16 31 

8 62 

4  124 

2 248 

1 496 

 
Therefore, 16 ∗ 31 =  496. 
Suppose we wish to multiply 31 and 25.  We will create two columns. 

29 25 

14 50 

7 100 

3 200 

1 400 

 
Therefore, 29 ∗ 25 =  25 + 100 + 200 + 400 =  725. 
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The idea is that dividing by two and multiplying by two is “easy” or at least easier than the 
standard algorithm.  However, how and why does the algorithm work and what is its 
connection to the binary expansion of a number? 
 
Notes/Hints: 

1. See the Appendix under Extended Activity B for related links and references. 
 
Binary Arithmetic 
 
Arithmetic is interesting and quite fun in binary.  In the decimal system, digits representing the 
same place value are added together, and if a group of ten can be made, then we carry over 
into the next place value.  In binary, the same thing happens; however, we make groups of two. 
 
Example 3.3:  
 
Calculate 1012  +  10012.    
 
 Answer: Looking at the ones column, 1 + 1 = 2, so we would “group and carry”  
   into the next place value. Then,              
 

      1012 
+10012 

   11102 
 
 
Your turn! 
  
Evaluate 102 + 11002. 
 
 Answer:  11102 
 
Evaluate 110012  +  010102. 
  
 Answer:  1000112 
 
 

Homework Exercises Section 3 
 

1. Convert the following into base-ten 

a. 10102  

b. 011012  
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2. Convert 321 into binary. 

3. Convert 55 into binary using 8 binary digits (bits). 

4. Evaluate 0112 + 11002. 

5. Evaluate 111112  +  111102. 
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Section 4: ASCII: Computers and Binary 
 
Translating decimal numbers to binary is only one requirement for data transmission.  In fact, 
numbers, letters, words, and images are just some of the data can all be transferred in binary.  
One common translation between letters/words and binary is the ASCII system.  The American 
Standard Code for Information Interchange (ASCII) assigns numbers to all uppercase letters, 
lowercase letters, selected punctuation, transmission controls, and some special characters.  
There are two codes: Standard ASCII and Extended ASCII. 
  
For example M is assigned the number 77.  However, this number is translated into binary and 
transferred, so M = 10011012 (Standard ASCII) or 010011012 (Extended ASCII).  In total, there 
are 128 symbols in Standard ASCII and 256 in Extended ASCII.  These values, 128 and 256, are 
determined by the fact that computers use binary representations for letters, numbers, and 
symbols and the ASCII systems work with binary strings of different length.  The Standard ASCII 
uses 7-bit strings for all values, so there are 27 = 128 characters because there are 7 digits and 
two choices for each digit (0 or 1).  The Extended ASCII uses 8-bit strings for all values, so by the 
same reasoning there are 28=256 characters/commands.  Let’s look at the two values for M.  
Note the biggest difference are the number of digits, but the values are the same.  Let’s look at 
the place value. 
 
M = 10011012 = 1 ∗ 26 + 0 ∗ 25 + 0 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 

=  64 + 8 + 4 + 1 = 77 
M = 010011012 = 0 ∗ 27 + 1 ∗ 26  + 0 ∗ 25 + 0 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20  

=  64 + 8 + 4 + 1 = 77 
 
 
Your turn! 
 
The letter C has the value of 67.  Express C in 7-bit Standard ASCII and 8-bit Extended ASCII. 
   
 Answer:  67 =  64 + 2 + 1 =  26 + 21 + 20 = 10000112 in Standard ASCII and  
          010000112 in Extended ASCII. 
 
The next page has a table of Extended ASCII binary codes.  
 
In class, it would be a good exercise to erase some of the binary entries and have students 
determine the binary elements. 
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Your turn! 
 
Translate the following binary message using the table. 
 
01010011 01000101 01000011 01010101 01010010 01000101 
 
 Answer:  SECURE 
 
Encode KEY using the table. 
 
 Answer:  01001011 01000101 01011001 
 
You may have heard the word bit or byte before.  Usually we hear kilobyte (KB), megabyte 
(MB), or gigabyte (GB).  A bit (or binary digit) is a single digit (either 0 or 1).  So a given letter 
uses 8 bits. Given that much communication uses 8 bits to represent letters and commands, 8 
bits are called a byte.  To encode KEY, you needed 24 bits or 3 bytes. 
 
You can see how quickly the data can grow.  Try converting your first and last name to binary!  
In later sections, we will be learn about more efficient number systems. 
 

Extended ASCII Binary Decimal  Letter Extended ASCII Binary Decimal Letter 

01000001 65 A 01001110 78 N 

01000010 66 B 01001111 79 O 

01000011 67 C 01010000 80 P 

01000100 68 D 01010001 81 Q 

01000101 69 E 01010010 82 R 

01000110 70 F 01010011 83 S 

01000111 71 G 01010100 84 T 

01001000 72 H 01010101 85 U 

d01001001 73 I 01010110 86 V 

01001010 74 J 01010111 87 W 

01001011 75 K 01011000 88 X 

01001100 76 L 01011001 89 Y 

01001101 77 M 01011010 90 Z 
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Checksums as Digital Signatures 
 
Utilizing the ASCII code above, we can introduce our first digital signature.  MD5, SHA-1, and 
SHA-2 are examples of digital signatures.  These hashes give a “unique” way to identify digital 
data, hence its signature.  One can create a digital signature for a word, a file, or an entire hard 
drive.  One very basic example would be doing an 8 digit checksum for a word.   
 
Consider the word FROG.  The value of the word FROG would be  

F+R+O+G =  70 + 82 + 79 + 71 =  302.   
Since we want to write this as an 8 bit value, we would take 302 mod 256 which is equivalent to 
46.  The digital signature would be 00101110 in binary since 46 =  32 + 8 + 4 + 2. 
 
If instead we replaced the O in FROG with the number 0, then FR0G = F+R+0+G.  The numerals 
0 through 9 are not in the table above; however, they taken on the decimal values 48 through 
57, where 0 is worth 48, 1 is worth 49, 2 is worth 50, etc.  So  

FR0G =  70 + 82 + 48 + 71 =  271  
which is equivalent to 15 mod 256. The digital signature of FR0G is 00001111. 
 
Clearly FR0G and FROG give different signatures.  You cannot recreate the original word from 
the digital signature, but you could tell whether or not the signature could belong to FROG or 
FR0G.  We use the word “could” because there is going to be a problem, or what we will later 
call a collision.  To demonstrate this issue, try the following problems: 
 
Your turn! 
 
Find the 8 bit digital signature for ZD. 
   
 Answer: Z+D =  90 + 68 =  178.  The digital signature is 10110010. 
 
Find the 8 bit digital signature for A22DIGITAL22YR 
 
 Answer:  A+2+2+D+I+G+I+T+A+L+2+2+Y+R 

=   65 + 50 + 50 + 68 + 73 + 71 + 73 + 84 + 65 + 76 + 50 + 50 + 89 + 82   
=  178 mod 256.   

   The digital signature is 10110010. 
 
The previous examples demonstrate that two very different words can have the same 
signature.  We want to know whether we are looking at ZD or at A22DIGITAL22YR. In order for 
these two strings to have different digital signatures, we will need to create more complicated 
methods than using a checksum approach. 
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Example 4.1: 
 
Another fun example of a collision is DORMITORY and DIRTYROOM.  You could calculate the 
checksums to verify that have the same digital signature; however, you don’t need too.  Can 
you see why? 
 
 Answer: The letters are the same just in a different arrangement. 
 
 
Your turn! 
 
Find two words (one complicated and one simple like our ZD example) and show that they have 
the same checksum. 
 
 Answers may vary. 
 

Homework Exercises Section 4 

1. Translate MAP into binary. 

2. Find the 8 bit digital signature for COOL. 

3. Find three words that will have the same digital signature where you will know the 

signatures are the same without any calculation.   
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Section 5:  Expressing Numbers in Hexadecimal 
 
The word hexadecimal comes from the Greek word hex, meaning “six” and the Latin word 
decem, meaning “ten.”  Putting these together, we see that hexadecimal means “of sixteen.”  
Expressing numbers in hexadecimal is very similar to the work we did with binary in Section 3, 
but instead of writing in base 2, we are going to use base 16.  In base 2, we used the symbols 0 
and 1.  In base 16, we will use 0, 1, 2, … , 9, 10, 11, 12, 13, 14, 15.  However, we cannot actually 
use 10, 11, 12, 13, 14, or 15 because each number has two digits.  Instead, we will use letters: 
 

Decimal 10 11 12 13 14 15 

Hexadecimal a b c d e f 

 
Let’s look at 𝑛 = 2519.  The digits and places tell us exactly how to obtain the number. 
 
In decimal:  2519 = 2 ⋅ 1000 + 5 ⋅ 100 + 1 ⋅ 10 + 9 ⋅ 1 = 2 ⋅ 103 + 5 ⋅ 102 + 1 ⋅ 101 + 9 ⋅ 100 
 
When we converted numbers into binary, we used a similar idea, but instead of powers of 10, 
we used powers of 2.  To write 2519 in hexadecimal, we repeat the process, but with powers of 
16.  The coefficients will be the digits 0,1, … , 9, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓.  To help with the process, the first 
few powers of 16 are listed in the table below: 
 

162 163 164 165 
256 4096 65536 1048576 

 
In hexadecimal:  2519 = 9 ⋅ 162 + 13 ⋅ 161 + 7 ⋅ 160 =  9𝑑716 
 
As we did with binary, we will denote the number expressed in hexadecimal with a subscript of 
16.   
 
As a review, we can also express 2519 in binary: 

2519 = 1 ⋅ 211 + 0 ⋅ 210 + 0 ⋅ 29 + 1 ⋅ 28 + 1 ⋅ 27 + 1 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22

+ 1 ⋅ 21 + 1 ⋅ 20 
  = 1001110101112 
 
Since 16 = 24, we can quickly convert binary to hexadecimal and vice versa by taking breaking 
up our binary string into 4-bit pieces and converting each piece to its decimal value and then its 
hexadecimal value. 
 
In our example above,  

2519 = 1001 1101 0111 

Decimal 9 13 7 

Hex 9 d 7 
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This is so much faster!  It can be easier to convert decimal to hexadecimal by going through 
binary first, and we will use that process throughout.   
 
Example 5.1:   
 
Express 𝑛 = 753 in hexadecimal.   
 
 Answer: We first express 753 in binary: 

753 = 10 1111 00012 
 
   Observe that the binary word has 10 digits, which is not divisible by 4.   
   We can solve this problem by splitting the string into 4-bit pieces starting  
   at the right.  In the left-most piece, we will add as many zeroes as   
   necessary to give it length 4.  In this case, we need two zeros: 

753 = 10 1111 00012 = 0010 1111 00012 
 
   Now we will rewrite each 4-bit piece in decimal (and hexadecimal if  
   necessary): 
 

753 = 0010 1111 0001 

Decimal 2 15 1 

Hex 2 f 1 

 
   Therefore we have 753 = 2𝑓116 
 
 
Example 5.2:   
 
Find the decimal expansion for 𝑏47𝑐16  
 
 Answer: Based on the digit placement,  
 

𝑏47𝑐16 = 𝑏 ⋅ 163 + 4 ⋅ 162 + 7 ⋅ 161 + 𝑐 ⋅ 160 
                =  11 ⋅ 163 + 4 ⋅ 162 + 7 ⋅ 161 + 12 ⋅ 160 
                = 46204 

 
Your Turn!  
 
Give the decimal expansion of each number. 

a. 5𝑏316 

 
Answer:   5𝑏316 = 5 ⋅ 162 + 𝑏 ⋅ 16 + 3 ⋅ 160 

                                                      = 5 ⋅ 162 + 11 ⋅ 16 + 3 ⋅ 160 
    = 1280 + 176 + 3 = 1459  
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b. 2716 

 
Answer:  2716 = 2 ⋅ 161 + 7 ⋅ 160 

                                                    = 32 + 7 = 39 
c. 𝑓𝑎𝑑𝑒16 

 
Answer:   𝑓𝑎𝑑𝑒16 = 𝑓 ⋅ 163 + 𝑎 ⋅ 162 + 𝑑 ⋅ 161 + 𝑒 ⋅ 100 

                                                        = 15 ⋅ 163 + 10 ⋅ 162 + 13 ⋅ 161 + 14 ⋅ 100 
                                                        = 61440 + 2560 + 208 + 14 
                                                        = 64222 
 
Your Turn!   
 
Give the hexadecimal expansion of each number. 
 

a. 9715 

 
Answer:   9715 = 100101111100112 

                                                    = 10  0101   1111   00112 
                                                    = 0010  0101   1111   00112 
                                                    = 2           7            15        3 
                                                    = 27𝑓316 
  

b. 10011101001112 

 

Answer:   10011101001112 = 1  0011  1010  01112 
                                                                             = 0001  0011  1010  01112 
                                                                             = 1           3          10        7  
                                                                             = 13𝑎716 
 
 

Homework Exercises Section 5 

1. Give the decimal expansion of each number. 

a. 3𝑏716 

b. 9216 

c. 𝑓𝑒𝑑16 

2. Give the hexadecimal expansion of each number. 

a. 2371 

b. 1001100110010112 
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Section 6:  Bit Operations;  Cryptography versus Hashing 

 
The security and integrity of the MD5 Hash Algorithm lies in the complex systems of steps 
required to transform the data.  However, each step is fairly simple and can be described in 
terms of bit operations.  These bit operations give us different ways to view arithmetic 
operations on binary strings.  In “normal arithmetic,” we perform operations using the entire 
numbers: 
 
To add 23 and 79, we would see that in the ones place, 3 + 9 = 12, so we would record the 2 
and carry the 1.  Then 1 + 2 + 7 = 10 and 

  23 
+79 

   102 
 
To multiply 3 and 74, we can use a few different methods: 

  74 
×  3 

   222 
 

or 
 

3(74) = 3(70 + 4) = 3(70) + 3(4) = 210 + 12 = 222 
 
Even the binary arithmetic we did earlier used the entire number: 
 

      1012 
+10012 

   11102 
 
Bit operations do not use the entire number.  Instead, we perform the arithmetic bit-by-bit.  To 
perform a bit operation, we first need to convert any decimal numbers into binary.  We will 
explore four bit operations:  AND, OR, XOR, and NOT.  The operations AND, OR, and XOR each 
compares two bits and returns a new bit.  The operation NOT only requires one bit to return a 
new bit.  In computer science courses, you might hear people refer to AND, OR, and XOR as 
binary operators.   In this context, “binary” refers to the two bits required for inputs.  A 
computer scientist might also refer to NOT as a unary operator because it only requires one bit 
as an input.  Since each operation is bit-wise, we need to make sure all strings are the same 
length, that is, they each have the same number of bits.   
 
For each of these definitions, lowercase letters will represent bits and uppercase letters will 
represent strings.    
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AND:  The AND operation compares two bits.  If both bits are 1, then it returns a 1.  Otherwise 
it returns a 0.   
 
There are many ways to interpret this operation.  For example, we can express AND as a piece-
wise function.  For two bits x and y, 

𝑥 𝐴𝑁𝐷 𝑦 = {
1           if 𝑥 = 𝑦 = 1
0  if 𝑥 = 0 or 𝑦 = 0

 

 
Another way to view the AND operation is using a truth table where 1 = True and 0 = False.  We 
read truth tables just like we read addition tables: 
 

AND 1 0 

1 1 0 

0 0 0 

 
Using the table, we can read  

1 AND 0 = 0 
 

We also see that AND has the same commutative property as addition and multiplication do, so  
 

1 AND 0 = 0 AND 1 = 0 
 
Why do we call the table above a Truth Table?  We can determine whether a compound 
statement is True or False based on whether each simple statement is True or False.  Consider 
the following statements: 

A. The sky is blue 

B. The Earth is round 

C. The Moon is made of cheese 

We know that statements A and B are true, but C is false.  The statement, “The sky is blue AND 
the Earth is round” is true because we know each simple statement is true.  The statement, 
“The Earth is round AND the Moon is made of cheese” is false because the second part is false.   
Two true statements combine to make another true statement, but if one part is false, then the 
entire statement is false.  We can also rewrite these two statements in terms of 1 for True and 
0 for False: 
 
“The sky is blue AND the Earth is round” = True  ⟺    1 𝐴𝑁𝐷 1 = 1       
 
“The Earth is round AND the Moon is made of cheese” = False  ⟺    1 𝐴𝑁𝐷 0 = 0       
 
This use of AND is also the same as how it is used in probability.  Suppose an event is “Drawing 
a red Jack” from a standard 52-card bridge deck.  When drawing a single card, we need it to be 
both Red AND Jack to satisfy the event. 
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Now that we are more comfortable with the idea of AND, let’s try using it as a bit operation.   
 
Example 6.1:  
 
Let 𝑋 = 10110 and 𝑌 = 11010.  We first note that each string has 5 bits, so they have equal 
length.  To compute 𝑋 𝐴𝑁𝐷 𝑌, we compare bits in the same position.  Since this is performed 
bit-wise, we can start on the left or we can start on the right.  Starting on the right is probably 
habit for most people, so we can start there: 

0 𝐴𝑁𝐷 0 = 0 
1 𝐴𝑁𝐷 1 = 1 
1 𝐴𝑁𝐷 0 = 0 
0 𝐴𝑁𝐷 1 = 0 
1 𝐴𝑁𝐷 1 = 1 

 Putting it together, we have 
           10110 
𝐴𝑁𝐷  11010 

            10010 
 
As actual numbers, = 101102 = 22 , 𝑌 = 110102 = 26 and 𝑋 𝐴𝑁𝐷 𝑌 = 100102 = 18.  The 
AND operation is bit-wise, so the entire number rarely gives meaningful information.   
 
Your turn!   
 
Let 𝑋 = 11010010 and 𝑌 = 10111001.  Compute  𝑋 𝐴𝑁𝐷 𝑌 
 
 Answer: 

           11010010 
𝐴𝑁𝐷  10111001 

            10010000 
 
OR:  The OR operation compares two bits.  If at least one bit is a 1, then it returns a 1.  If both 
bits are 0, it returns a 0.  Just as with AND, we can express it as a piecewise function:   
 

𝑥 𝑂𝑅 𝑦 = {
1          if 𝑥 = 1 or 𝑦 = 1
0                   if 𝑥 = 𝑦 = 0

 

The truth table for OR is: 

OR 1 0 

1 1 1 

0 1 0 

 
We see that OR is also commutative.  With OR statements, we only need one part to be true to 
make the entire statement true.  Saying that “The Earth is round OR the Moon is made of 
cheese” is a true statement because either “The Earth is round” is true or “The Moon is made 
of cheese” is true, and we know the Earth is indeed round.   
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This is the same idea we see with the OR in probability.  Going back to our standard bridge 
deck, suppose an event is “Drawing a red OR a Jack.”  Drawing the 2 of Diamonds would satisfy 
the event because it is a red card, even though it is not a Jack.  Drawing the Jack of Clubs would 
satisfy the event because it is a Jack, even though it is a black card.   
 
Example 6.2:  
 
Now let’s try using OR as a bit operation.  Let 𝑋 = 10110 and 𝑌 = 11010.  Both strings are the 
same length, so we can proceed.  To compute 𝑋 𝑂𝑅 𝑌, we compare bits in the same position.  
Again, the starting side does not matter, but we will start on the right because of long-ingrained 
habit: 
 

0 𝑂𝑅 0 = 0 
1 𝑂𝑅 1 = 1 
1 𝑂𝑅 0 = 1 
0 𝑂𝑅 1 = 1 
1 𝑂𝑅 1 = 1 

 Putting it together, we have 
           10110 
𝑂𝑅     11010 

            11110 
Your turn!   
 
Let 𝑋 = 11010010 and 𝑌 = 10111001.  Compute  𝑋 𝑂𝑅 𝑌 
 
 Answer: 

           11010010 
𝑂𝑅     10111001 

            11111011 
 
 
XOR:  The meaning of “OR” can be a bit ambiguous in the case where both bits are true.  If the 
compound statement is true, then it is unclear whether both simple statements are true or just 
one of them.  The term “XOR” stands for “Exclusive Or” because it behaves like OR, but it 
excludes the case where x AND y is true.  As a piecewise function,  
 

𝑥 𝑋𝑂𝑅 𝑦 = {
1          if 𝑥 ≠ 𝑦
0          if 𝑥 = 𝑦

 

 
In other words, XOR compares two bits and returns a True if the two bits are different and a 
False if the two bits are the same.  We can think of XOR representing “one or the other, but not 
both.” 
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As a table, this operation can be represented  
 

XOR 1 0 

1 0 1 

0 1 0 

 
Example 6.3:  
 
Let 𝑋 = 10110 and 𝑌 = 11010.  Both strings are the same length, so we can proceed.  To 
compute 𝑋 𝑋𝑂𝑅 𝑌, we compare bits in the same position.  Again, the starting side does not 
matter, but we will start on the right because of long-ingrained habit: 
 

0 𝑋𝑂𝑅 0 = 0 
1 𝑋𝑂𝑅 1 = 0 
1 𝑋𝑂𝑅 0 = 1 
0 𝑋𝑂𝑅 1 = 1 
1 𝑋𝑂𝑅 1 = 0 

 Putting it together, we have 
           10110 
𝑋𝑂𝑅  11010 

            01100 
 
Your turn!   
 
Let 𝑋 = 11010010 and 𝑌 = 10111001.  Compute  𝑋 𝑋𝑂𝑅 𝑌 
 
 Answer: 

           11010010 
𝑋𝑂𝑅  10111001 

             01101011 
 
Observe that in both examples, the answers differ from those of OR in the positions where both 
bits were the same.   
 
NOT:  The NOT operation looks at a single bit and returns another single bit.  We can view NOT 
as a bit flip operation because each bit is going to “flip” values so that a 0 becomes a 1 and a 1 
becomes a 0: 
 

𝑁𝑂𝑇 1 = 0 
𝑁𝑂𝑇 0 = 1 

 
Performing 𝑁𝑂𝑇 𝑋 gives us the bit complement of X.   
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Example 6.4:    
 
Let 𝑋 = 10110 and 𝑌 = 11010.  To obtain 𝑁𝑂𝑇 𝑋, we flip each bit in X: 

𝑁𝑂𝑇 𝑋 = 01001 
 
Likewise, we can compute 𝑁𝑂𝑇 𝑌 = 00101. 
 
Your turn!   
 
Let 𝑋 = 11010010 and 𝑌 = 10111001. 
 

a. Compute 𝑁𝑂𝑇 𝑋  

 
 Answer:   𝑁𝑂𝑇 𝑋 = 00101101 

 
b. Compute 𝑁𝑂𝑇 𝑌  

 
 Answer:   𝑁𝑂𝑇 𝑌 = 01000110 

 
 
Combining the Operations:  When combining the operations, we need to be careful with the 
order in which we perform them.   The NOT operation takes highest priority.  To compute NOT 
X AND Z, we interpret it as (NOT X) AND Z.   AND, OR, and XOR are each commutative and 
associative.   As always, perform the operation in parentheses first.  
 
Let’s try some examples.  For each example, we will use the following strings of length 5: 

𝑋 = 10110 
𝑌 = 11010  
𝑍 = 01101 

 
Example 6.5:   
 
Evaluate (𝑋 𝐴𝑁𝐷 𝑌) 𝑂𝑅 (𝑁𝑂𝑇 𝑋 𝐴𝑁𝐷 𝑍). 
 
 Answer: To evaluate this, we will perform the NOT first, then the expressions in  
   parentheses, and then finally the OR in the middle. 
 

1. 𝑁𝑂𝑇 𝑋 =  01001 

2. Parentheses 

a. 𝑋 𝐴𝑁𝐷 𝑌 = 10110 𝐴𝑁𝐷 11010: 

           10110 
𝐴𝑁𝐷  11010 

            10010 
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b. (𝑁𝑂𝑇 𝑋) 𝐴𝑁𝐷 𝑍 =  01001 𝐴𝑁𝐷 01101: 

 
           01001 
𝐴𝑁𝐷  01101 

            01001 
 

3. The OR:  (𝑋 𝐴𝑁𝐷 𝑌) 𝑂𝑅 (𝑁𝑂𝑇 𝑋 𝐴𝑁𝐷 𝑍)  =  10010 𝑂𝑅 01001: 

 
           10010 
𝑂𝑅     01001 

            11011 
 
Example 6.6:   
 
Evaluate (𝑋 𝐴𝑁𝐷 𝑍) 𝑂𝑅 (𝑌 𝐴𝑁𝐷 𝑁𝑂𝑇 𝑍). 
 
 Answer: Again, we must first find NOT  Z:  𝑁𝑂𝑇 𝑍 =  10010.   
 
   For the parentheses, 
   𝑋 𝐴𝑁𝐷 𝑍 = 10110 𝐴𝑁𝐷 01101 : 
 

           10110 
𝐴𝑁𝐷  01101 

            00100 
 
   𝑌 𝐴𝑁𝐷 (𝑁𝑂𝑇 𝑍) = 11010 𝐴𝑁𝐷 10010 : 
 

           11010 
𝐴𝑁𝐷  10010 

            10010 
 
  
   Now we can combine everything:   
   (𝑋 𝐴𝑁𝐷 𝑍)𝑂𝑅 (𝑌 𝐴𝑁𝐷 𝑁𝑂𝑇 𝑍) = 00100 𝑂𝑅 10010: 
 

           00100 
𝑂𝑅     10010 

            10110 
Example 6.7:   
 
Evaluate 𝑋 𝑋𝑂𝑅 𝑌 𝑋𝑂𝑅 𝑍 
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 Answer: Since XOR is associative, the grouping does not matter.  We can either  
   evaluate (𝑋 𝑋𝑂𝑅 𝑌) 𝑋𝑂𝑅 𝑍 or we can evaluate 𝑋 𝑋𝑂𝑅 (𝑌 𝑋𝑂𝑅 𝑍).  Or  
   we can do both.   (That was a joke on the ambiguity of OR.  If you didn’t  
   get the joke, take a few minutes to review the OR operation discussed a  
   few pages back.)  We will actually do both so that we can see that the  
   grouping does not affect the final answer: 
    

Option A:  (𝑋 𝑋𝑂𝑅 𝑌) 𝑋𝑂𝑅 𝑍 =  00001 
 

   𝑋 𝑋𝑂𝑅 𝑌 =  10110 𝑋𝑂𝑅 11010: 
  

           10110 
𝑋𝑂𝑅  11010 

            01100 
 

   (𝑋 𝑋𝑂𝑅 𝑌) 𝑋𝑂𝑅 𝑍 =  01101 𝑋𝑂𝑅 01101: 
 

           01100 
𝑋𝑂𝑅  01101 

            00001 
  
   Option B:  𝑋 𝑋𝑂𝑅 (𝑌 𝑋𝑂𝑅 𝑍)  =  00001 
 

   (𝑌 𝑋𝑂𝑅 𝑍)  =  11010 𝑋𝑂𝑅 01101: 
 

           11010 
𝑋𝑂𝑅  01101 

            10111 
  

   𝑋 𝑋𝑂𝑅 (𝑌 𝑋𝑂𝑅 𝑍)  =  10110 𝑋𝑂𝑅 10111: 
 

           10110 
𝑋𝑂𝑅  10111 

            00001 
 
Your turn!    
  
Evaluate 𝑌 𝑋𝑂𝑅 (𝑋 𝑂𝑅 𝑁𝑂𝑇 𝑍) 
  
 Answer:   01100 

𝑌 𝑋𝑂𝑅 (𝑋 𝑂𝑅 𝑁𝑂𝑇 𝑍) = 11010 𝑋𝑂𝑅 (10110 𝑂𝑅 𝑁𝑂𝑇 01101) 
                                           = 11010 𝑋𝑂𝑅 (10110 𝑂𝑅 10010) 
                                           = 11010 𝑋𝑂𝑅 10110 
                                           = 01100 
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Homework for Section 6 
 

1. Let 𝑋 = 100110101 and 𝑌 = 010110111. 

a. Compute  𝑋 𝐴𝑁𝐷 𝑌 

b. Compute  𝑋 𝑂𝑅 𝑌 

c. Compute  𝑋 𝑋𝑂𝑅 𝑌 

d. Compute 𝑁𝑂𝑇 𝑋  

e. Compute 𝑁𝑂𝑇 𝑌  

2. Let 𝑋 = 10011, 𝑌 = 01011, and 𝑍 = 10010.   Evaluate Y XOR (X OR NOT Z) 
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Section 7: Hashing and the MD5 Algorithm 

Cryptography versus Hashing: 
 
When you make a secure purchase online, you want to be sure of two things: 

1. Your credit card information is safe and secure as it is being transmitted to the website. 

2. The website to which you are sending your credit card information is the actual website 

you intended to use. 

 

These goals require two different types of secrecy and security. 
 
Keeping your credit card information secure requires encryption.  When we encrypt data, we 
transform the data in a way that keeps it secret from those who don’t need to know it, but the 
data can be un-transformed by the intended recipient and read.  Cryptography is the study of 
different methods of encryption.  To determine whether the website is authentic, services like 
Verisign and Symantec will verify the website’s hash value.  A hash function gives us a way to 
see if data has been tampered with.  It is a mathematical function that transforms data into a 
unique value, and small changes in the data should result in large changes to the value.   To 
preserve the integrity of the data, hashing should not be reversible.  If it were, fraudulent 
websites could reverse-engineer the function to give a “safe” value, and your credit card 
information would be in the hands of the wrong people. 
 
In short, encryption should be reversible if you have the proper key, but hashing should not.  
We can think of a hash functions like hash browns:  We recognize that the hash browns came 
from a potato that was shredded, but there is no way to reconstruct the original potato from 
the shredded bits.  This is also related to the idea of invertible functions.  The function 

𝑓(𝑥) = 3𝑥 − 7 could be an encryption function because its inverse 𝑓−1(𝑥) =
𝑥+7

3
 is also a 

function.  That is, we could use f to encrypt a message and use 𝑓−1 to decrypt the message.  
This same function would not work as a hash function because all changes in the data values 
give equally sized changes in the function output.  The function 𝑔(𝑥) = 𝑥2 would not make a 
good encryption function because its inverse is not a function (it fails the Horizontal Line Test).  
For example, g would encrypt 2 as 4, but when we try to decrypt the 4, we’re not sure if it came 
from 2 or -2.   The function g would also make a poor hash function because both 2 and -2 give 
a function value of 4, which is contrary to our desire for a function that transforms each piece 
of data into a unique value. 
 
Examples:  

i. Transforming a message by shifting each letter forward by one position in the 

alphabet is a form of encryption.  With this, A becomes B, B becomes C, and 

ultimately Z becomes A.  To reverse the process, you could shift each letter in the 

encrypted message backward by one position.  A person who sees your encrypted 
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message would not be able to read the message without knowing how it was 

encrypted. 

 
ii. The check sums you computed in Section 2 are a mild hash function.  The check sum 

is sensitive to changes in the data, which is why frog and fr0g give such different 

values.  However, there are frequent collisions where two strings have the same 

check sum.  For example, the DIRTYROOM and DORMITORY give a collision because 

they have the same checksum.  We don’t want collisions in good hash functions 

because we can’t determine the true source of the value. 

 

iii. Writing symbols in ASCII, like you did in Section 4, is mild encryption.  It does 

transform the data, but the method is not very secretive. 

 
iv. Many websites use a method of encryption called RSA.  RSA is named for its 

creators, Ronald Rivest, Adi Shamir, and Leonard Adleman.  It is an example of public 

key cryptography because it uses two secret keys, one that is made public, and 

another that is kept secret.  RSA uses modular arithmetic and is secure because 

factoring large numbers is computationally difficult. 

 
v. We will focus on the MD5 Hashing Algorithm, which was a popular method of 

hashing.   

 

MD5 is the fifth iteration of the Message Digest algorithm and was developed in 1991 by 
Ronald Rivest of MIT (and one of the creators of RSA) to replace MD4. The MD5 algorithm 
produces a 128-bit (16-byte) hash value, typically expressed as a 32 digit hexadecimal number. 
This hash value can be thought of as a checksum or digital fingerprint. Each file has a fairly 
unique MD5 hash and we can see if two files are identical by comparing their MD5 hash values. 
The slightest change in a file will result in very different MD5 hash values (as we’ll see here). 
We’ll also discuss the steps involved in this algorithm as part of this module.  
 
Let’s look at the steps of the algorithm:  
 
STEP 1: Our algorithm begins by converting all of our text to ASCII as discussed in Section 4. 
 
Let’s remind ourselves of this process with an example. 
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Example 7.1:  

 
Encode THE in ASCII. 

 
Answer: 01010100 01001000 01000101 

 
 
STEP 2: Our next step in the MD5 algorithm is to pad the message to get it to a set length (in 
bits).  
 
The goal will be to get a message of length that is congruent to 448 (mod 512). Even if our 
message begins out being congruent to 448 (mod 512), we will still pad the message. 
 
 
Consider the question: What is the difference between 512 and 448? Answer: 64. 
 
To pad the message, begin by placing a 1 at the end of the message. Then, add as many 0s as 
are needed to get the message to be of length congruent to 448 (mod 512).  So, in other words, 
you will always add a 1 and at least one 0.  
 
Example 7.2:  
 
If we encode THE in ASCII we get 01010100 01001000 01000101. How many bits need to be 
added in order to pad this message? In particular, how many 1s and 0s will that be?  

 
Answer:  Add 424 bits since the message is currently 24 bits. So, that’s 1 one and  
  423 zeros. 

Your turn!  

 
(Note: this example has some lowercase letters which are not shown in the table in Section 4. 
However, their values can be easily looked up.) 
 
If we encode The fluffy dog walked across the street on its way home. in ASCII we get: 

 
01010100 01101000 01100101 00100000 01100110 01101100 01110101 01100110 
01100110 01111001 00100000 01100100 01101111 01100111 00100000 01110111 
01100001 01101100 01101011 01100101 01100100 00100000 01100001 01100011 
01110010 01101111 01110011 01110011 00100000 01110100 01101000 01100101 
00100000 01110011 01110100 01110010 01100101 01100101 01110100 00100000 
01101111 01101110 00100000 01101001 01110100 01110011 00100000 01110111 
01100001 01111001 00100000 01101000 01101111 01101101 01100101 00101110 
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How many bits need to be added in order to pad this message? In particular, how many 1s and 
0s will that be? 

 
Answer:  Add 512 bits since the message is currently 448 bits. So, that’s 1 one and  
  511 zeros.  

 
STEP 3: As you saw in an earlier question, our padded messages are currently 64 bits shy of 
being congruent to 0 mod 512. We would like our final padded message to have length exactly 
congruent to 0 mod 512. We use those remaining 64 bits to append the length of the message.  
 
To do this, we begin by counting the bit length of the original message (before we padded the 
message). We then add the 64-bit representation of that number to the end of the message. If 
the message happens to be bigger than 264 bits long, then we only append the lower order bits 
of the bit-length.  
 
When we append the bits, we list the bytes (i.e. 8 bits) in order from most significant to least 
significant. We do not reverse the order of the bits within the bytes; we only reverse the order 
of the bytes. For example, if our original message had bit length 16, we’d add 00010000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 to the end of the 
padded message because 16 is represented with 7 bytes of 0s and then 00010000. 
 
Example 7.3:  
 
Giving the least significant bytes first, what would be the 64-bit representation of the length for 
a message consisting of 40 bits? 
 
 Answer:  Note that 40 = 01010002, thus if we make that 64-bits long we get,  

00000000 00000000 00000000 00000000 
   00000000 00000000 00000000 00101000.  
   Now, we reverse the order of the bytes. There are 8 bytes total. We  

begin with the last byte and rewrite from last byte to first byte:  
   00101000 00000000 00000000 00000000 
   00000000 00000000 00000000 00000000. 
Your turn!  
 
Giving the least significant bytes first, what would be the 64-bit representation of the length for 
a message consisting of 264 bits? 

 
Answer:  Noting that 264 = 00000001 000010002 we get, 

00000000 00000000 00000000 00000000  
  00000000 00000000 00000001 00001000  
  And now, reversing the byte order we get, 

00001000 00000001 00000000 00000000  
  00000000 00000000 00000000 00000000. 
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Example 7.4:  
 
Add the bit length to these messages and write down the final padded message (after padding 
from step 2 and step 3).  

 
01010100 01001000 01000101 
 
Answer:  
01010100 01001000 01000101 10000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00011000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
 

 
Your Turn!  
 
Add the bit length to this message and write down the final padded message (after padding 
from step 2 and step 3).  

 
01010100 01101000 01100101 00100000 01100110 01101100 01110101 01100110 
01100110 01111001 00100000 01100100 01101111 01100111 00100000 01110111 
01100001 01101100 01101011 01100101 01100100 00100000 01100001 01100011 
01110010 01101111 01110011 01110011 00100000 01110100 01101000 01100101 
00100000 01110011 01110100 01110010 01100101 01100101 01110100 00100000 
01101111 01101110 00100000 01101001 01110100 01110011 00100000 01110111 
01100001 01111001 00100000 01101000 01101111 01101101 01100101 00101110 

 
Answer:  
 
01010100 01101000 01100101 00100000 01100110 01101100 01110101 01100110 
01100110 01111001 00100000 01100100 01101111 01100111 00100000 01110111 
01100001 01101100 01101011 01100101 01100100 00100000 01100001 01100011 
01110010 01101111 01110011 01110011 00100000 01110100 01101000 01100101 
00100000 01110011 01110100 01110010 01100101 01100101 01110100 00100000 
01101111 01101110 00100000 01101001 01110100 01110011 00100000 01110111 
01100001 01111001 00100000 01101000 01101111 01101101 01100101 00101110 
10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
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00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
11000000 00000001 00000000 00000000 00000000 00000000 00000000 00000000  
 

In order to make this process easier, an online MD5 demo that performs all these steps can be 

found at https://sites.google.com/a/falcons.fitchburgstate.edu/cbuell/home. 

 
Example 7.5:  
 
Try the first three steps of this algorithm (converting to ASCII, padding the message and adding 
the length of the message) on the message One if by land. using the online MD5 demo and 
copy and paste your results below.  

 
Answer:  
01001111 01101110 01100101 00100000 01101001 01100110 00100000 01100010 
01111001 00100000 01101100 01100001 01101110 01100100 00101110 10000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
01111000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

 
Your Turn!  
 
Try the first three steps of this algorithm (converting to ASCII, padding the message and adding 
the length of the message) on the message PaSsWord using the online MD5 demo and copy 
and paste your results below.  
 

Answer:  
01010000 01100001 01010011 01110011 01010111 01101111 01110010 01100100 
10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000  

 
 

 

https://sites.google.com/a/falcons.fitchburgstate.edu/cbuell/home
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STEP 4: We now need to initialize the four words that will form our final MD5 output. These 
initialized values are always the same and are given as hexadecimal values, which you studied 
in section 5. Recall that the lowercase letters represent hexadecimal digits: 

𝑎 = 10, 𝑏 = 11, 𝑐 = 12, 𝑑 = 13, 𝑒 = 14, 𝑎𝑛𝑑 𝑓 = 15. 
 
Let  
 
𝐴 =  01 23 45 67 
𝐵 =  89 𝑎𝑏 𝑐𝑑 𝑒𝑓 
𝐶 = 𝑓𝑒 𝑑𝑐 𝑏𝑎 98 
𝐷 = 76 54 32 10 
 
Notice the symmetry involved in defining these initial words. Also, note that the MD5 algorithm 
reads these strings in reverse pair-wise order. So, for example A is treated as 67452301 
throughout the algorithm.  
 
STEP 5: The first part of this step is to break our message into blocks of 512 bits each.  
 
Example 7.5:  

 
How many blocks are there for each of the examples we did previously? Keep in mind this 
calculation is done after the padding done in steps 2 and 3. 
 

a) THE  
 
01010100 01001000 01000101 
 
Answer: 1 

 
 b) The fluffy dog walked across the street on its way home.  
 

00001010 00001001 01010100 01101000 01100101 00100000 01101000 01100001 
01110000 01110000 01111001 00100000 01100100 01101111 01100111 00100000 
01110111 01100001 01101100 01101011 01100101 01100100 00100000 01100001 
01100011 01110010 01101111 01110011 01110011 00100000 01110100 01101000 
01100101 00100000 01110011 01110100 01110010 01100101 01100101 01110100 
00100000 01101111 01101110 00100000 01101001 01110100 01110011 00100000 
01110111 01100001 01111001 00100000 01101000 01101111 01101101 01100101 
 
Answer: 2 

 
 
 



 

39 

 

c) What a life.  
 
01010111 01101000 01100001 01110100 00100000 01100001 00100000 01101100 
01101001 01100110 01100101 00101110 
 
Answer: 1 
 

We will now run the entire MD5 algorithm for these three examples. We’ll go through the 
entire MD5 algorithm just once for Examples 1 and 3 since each example has only one block of 
length 512 bits.  However, in Example 2, we’ll use MD5 twice, since there are two blocks.  
 
STEP 6: Next, we define four functions using the binary operations we learned about in Section 
7.  
 
F(X,Y,Z)=(X AND Y) OR (NOT X AND Z) 
G(X,Y,Z)=(X AND Z) OR (Y AND NOT Z) 
H(X,Y,Z)=X XOR Y XOR Z 
I(X,Y,Z)=Y XOR (X OR NOT Z) 
 
One other binary operation the algorithm uses will be <<<. This is often written as X <<< s 
where X is a binary string and s is an integer. This shifts all the digits of X to the left by s units, 
filling in any holes on the right with zeros and dropping all the extra numbers shifted past the 
first original digit.  
 
Example 7.6:  
 
Perform the following shift operation: 00001010 00001001 01010100 01101000 <<< 15 

 
Answer: 10101010 00110100 00000000 00000000 

 
Your turn!  
 
Perform the following shift operations: 

 
a) 01010111 01101000 01100001 01110100 <<< 22 
b) 01101000 01101111 01101101 01100101 <<< 7 
 
Answer:  
a) 01011101 00000000 00000000 00000000 
b) 00110111 10110110 10110010 10000000 
 

Now, we’ll create a function T which takes any of the numbers 1 through 64 as inputs and has 
the integer part of T[i]=232|sin(i)| (where i is in radians) as the output. This function helps 
scramble the bits. 
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Example 7.7: Calculate T[1]. 
 

Answer: T[1]= 3,614,090,360 
 

 
Your Turn! Calculate T[32] and T[64]. 

 
Answer: T[32]=2,368,359,562 and T[64]=3,860,291,034 

 
STEP 7: We are now ready to see the 4-round algorithm that is used to create the MD5 hash. 
The following pseudocode comes directly from Ron Rivest’s original memo on the MD5 hash in 
1992:  
 
Do the following:      
 
/* Process each 16-word block. */     
For i = 0 to N/16-1 do    
     
/* Copy block i into X. */       
For j = 0 to 15 do         
Set X[j] to M[i*16+j].       
end /* of loop on j */   
 
/* Save A as AA, B as BB, C as CC, and D as DD. */       
AA = A       
BB = B  
CC = C       
DD = D        
 
/* Round 1. */       
 
/* Let [abcd k s i] denote the operation            
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */       
 
/* Do the following 16 operations. */       
 
[ABCD  0  7  1]  [DABC  1 12  2]  [CDAB  2 17  3]  [BCDA  3 22  4]      [ABCD  4  7  5]  [DABC  5 12  6]  
[CDAB  6 17  7]  [BCDA  7 22  8]      [ABCD  8  7  9]  [DABC  9 12 10]  [CDAB 10 17 11]  [BCDA 11 22 
12]      [ABCD 12  7 13]  [DABC 13 12 14]  [CDAB 14 17 15]  [BCDA 15 22 16]        
 
/* Round 2. */       
/* Let [abcd k s i] denote the operation            
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */       
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/* Do the following 16 operations. */       
 
[ABCD  1  5 17]  [DABC  6  9 18]  [CDAB 11 14 19]  [BCDA  0 20 20]      [ABCD  5  5 21]  [DABC 10  9 
22]  [CDAB 15 14 23]  [BCDA  4 20 24]      [ABCD  9  5 25]  [DABC 14  9 26]  [CDAB  3 14 27]  
[BCDA  8 20 28]      [ABCD 13  5 29]  [DABC  2  9 30]  [CDAB  7 14 31]  [BCDA 12 20 32]        
 
/* Round 3. */       
/* Let [abcd k s t] denote the operation            
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */       
 
/* Do the following 16 operations. */       
 
[ABCD  5  4 33]  [DABC  8 11 34]  [CDAB 11 16 35]  [BCDA 14 23 36]      [ABCD  1  4 37]  [DABC  4 
11 38]  [CDAB  7 16 39]  [BCDA 10 23 40]      [ABCD 13  4 41]  [DABC  0 11 42]  [CDAB  3 16 43]  
[BCDA  6 23 44]      [ABCD  9  4 45]  [DABC 12 11 46]  [CDAB 15 16 47]  [BCDA  2 23 48]   
 
/* Round 4. */       
 
/* Let [abcd k s t] denote the operation            
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */       
 
/* Do the following 16 operations. */       
 
[ABCD  0  6 49]  [DABC  7 10 50]  [CDAB 14 15 51]  [BCDA  5 21 52]      [ABCD 12  6 53]  [DABC  3 
10 54]  [CDAB 10 15 55]  [BCDA  1 21 56]      [ABCD  8  6 57]  [DABC 15 10 58]  [CDAB  6 15 59]  
[BCDA 13 21 60]      [ABCD  4  6 61]  [DABC 11 10 62]  [CDAB  2 15 63]  [BCDA  9 21 64]  
      
/* Then perform the following additions. (That is increment each        of the four registers by the 
value it had before this block  was started.) */       
A = A + AA       
B = B + BB       
C = C + CC       
D = D + DD      
 
end /* of loop on i */ 
 
 
So, each time we send a 512-bit block word through the algorithm, we’ll get a new A, B, C, and 
D and we’ll use those for the next 512-bit block word. We’ll do this until all of the 512-bit block 
words have been done.  Note that inside of this algorithm we use binary values, bit operations, 
and then convert back to hexadecimal. These are all concepts we learned in previous sections.  
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Finally, we need to report the outcome of the MD5 algorithm. You will have ABCD, but we don’t 
forget about the need to report the output with low-order byte first. 
 
Example 7.8:  
 
Let’s try converting the final MD5 output to the final result of MD5. Suppose after all rounds of 
MD5,  A=ab 12 c7 4d, B=01 34 78 21, C=71 04 ad 11, and D=90 45 ab cd. What will be the final 
result of MD5?  
 

Answer:  4dc712ab2178340111ad0471cdab4590 
 

Homework Exercises Section 7 

1. Encode What a life. in ASCII. Then, determine how many bits need to be added in order 

to pad this message? In particular, how many 1s and 0s will that be? 

2. Giving the least significant bytes first, what would be the 64-bit representation of the 

length for a message consisting of 120 bits? 

3. Add the bit length to this messages and write down the final padded message (after 

padding from step 2 and step 3). 

01010111 01101000 01100001 01110100 00100000 01100001 00100000 01101100 
01101001 01100110 01100101 00101110 

4. Create your own word/phrase. Use the online MD5 demo to record the output after the 

first three steps of the MD5 algorithm (converting to ASCII, padding the message and 

adding the length of the message) and record its final MD5 hash value. The online demo 

can be found here: https://sites.google.com/a/falcons.fitchburgstate.edu/cbuell/home. 

5. Perform the following shift operations:  

a. 01011101 00001111 00101010 11100011 <<< 17 

b. 00000001 11111111 11101011 <<< 3 

6. Recall that T[i]=232|sin(i)| (where i is measured in radians). Calculate T[48]. 

 

 

 
  

https://sites.google.com/a/falcons.fitchburgstate.edu/cbuell/home
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Section 8: Uses of MD5 and Future Hashing Functions 
 
MD5 has been used in a variety of cryptographic applications including data integrity 
verification. In particular, suppose you want to make sure that a transferred file has arrived 
intact. A pre-computed MD5 checksum will also be attached to a file stored on a file server, and 
after downloading, the user can compare the checksum of the downloaded file to the checksum 
for the stored file to validate the correct file has been downloaded. MD5 is also used to store 
passwords and to provide a unique identifier for electronically-transmitted documents.  
 
One common use of this algorithm is to compute MD5 hash values for files. The great thing 
about the MD5 hash is that even a tiny change in a file will result in a drastic change in the MD5 
hash value.  
 
Your Turn!  
 
Try this for yourself with a Word file and this free app: http://www.winmd5.com/. Begin by 
calculating the MD5 hash for your file. Then, open the file and make a slight change. See what 
happens to the MD5 hash after the change. Report the two hash values.  If you undo the 
change, do you get back to the original hash value?  
 
In addition, MD5 hash values are still given on some SSL certificates if you examine them in 
certain browsers. For example, if you examine Facebook’s SSL certificate in Safari, you’ll see its 
MD5 hash value (along with a few others).  

 

http://www.winmd5.com/


 

44 

 

 
The Future of Hash Functions 
 
Starting in 1996, weaknesses in MD5 known as collisions were discovered. A collision occurs 
when two files give the same hash value. A good hash function will make finding two such files 
very difficult. However, in 2005 Xiaoyun Wang and Hongbo Yu found an algorithm that will 
produce two files with very small differences that produce the same MD5 hash value.  
 
Currently, despite the collision concerns MD5 is still used in some government applications. 
However, it has been phased out of online security certificates. It has been replaced by SHA-1, 
another hash function. In fact, SHA stands for “Secure Hash Algorithm.”  However, SHA-1 has 
also been shown to have collisions and is thus no longer useful in the internet security world; it 
will be phased out by 2017 and replaced by SHA-2 or other more complicated versions of SHA.  
  



 

45 

 

References 
 
Burger, Edward B. “The Heart of Mathematics, An Invitation to Effective Thinking.” John  Wiley 
& Sons Inc, 2009. 
 
Fay-Wolfe, Victor. “Digital Signature (Hashing) Introduction.” PDF slides presented at 
 RECONNECT 2014.  
 
Rivest, Ronald. “The MD5 Message-Digest Algorithm.” https://www.ietf.org/rfc/rfc1321.txt, 
 April 1992.  
 
Selinger, Peter. ``MD5 Collision Demo." http://www.mathstat.dal.ca/~selinger/md5collision/, 
 February 2006.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.ietf.org/rfc/rfc1321.txt
http://www.mathstat.dal.ca/~selinger/md5collision/


 

46 

 

 
 

Appendix: Extended Activities 
 
Extended Activity A: 
 
Consider some reasons that the banks might use 7, 3, and 9 in their calculations when working 
mod 10 but not use 2,4,5, etc? 
 
Recall the hints/ideas: 

1. What would happen if the previous problem came down to solving  
8 + 4𝑑 ≡ 0 mod 10 instead of 8 + 7𝑑 ≡ 0 mod 10? 

2. The main idea here is the idea of relatively prime numbers.  In the example, 7, 3 and 
9 are all relatively prime to 10.  

 
For Hint/Idea 1, you may have noticed that there are multiple solutions. Also, if the problem 
came down to 7 + 4𝑑 ≡ 0 mod 10, then there would be no solutions! The reason there are 
multiple answers or no answer is because 10 and 4 share a common factor whereas 10 and 7, 
10 and 3, and 10 and 9 do not share a common factor. When two integers m and n have no 
common factors (besides 1), we say m and n are relatively prime 
 
We can see a pattern in the multiplication tables.  The first table is a basic multiplication table 
and the second table is a multiplication table mod 10. 
 

. 
 

x 0 1 2 3 4 5 6 7 8 9  

0 0 0 0 0 0 0 0 0 0 0  

1 0 1 2 3 4 5 6 7 8 9  

2 0 2 4 6 8 10 12 14 16 18  

3 0 3 6 9 12 15 18 21 24 27  

4 0 4 8 12 16 20 24 28 32 36  

5 0 5 10 15 20 25 30 35 40 45  

6 0 6 12 18 24 30 36 42 48 54  

7 0 7 14 21 28 35 42 49 56 63  

8 0 8 16 24 32 40 48 56 64 72  

9 0 9 18 27 36 45 54 63 72 81  

 

x (mod 10) 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 0 2 4 6 8 

3 0 3 6 9 2 5 8 1 4 7 

4 0 4 8 2 6 0 4 8 2 6 

5 0 5 0 5 0 5 0 5 0 5 

6 0 6 2 8 4 0 6 2 8 4 

7 0 7 4 1 8 5 2 9 6 3 

8 0 8 6 4 2 0 8 6 4 2 

9 0 9 8 7 6 5 4 3 2 1 
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There are two important aspects to the second table to note: 

 
1. In rows where the value is relatively prime to 10 (these are 1,3,7, and 9) every value 

between 0 and 9 appears.  In rows where the value is not relatively prime to 10 (these are 
0,2,4,5,6, and 8), not all values between 0 and 9 will appear.  For example, only the values 
0,2,4,6, and 8 appear in some rows and only 0 and 5 appear in row 5. 
 

2. In rows where the value is relatively prime to 10 (these are 1,3,7, and 9) each value appears 
exactly once.  In rows where the value is not relatively prime to 10 (these are 0,2,4,5,6, and 
8), there are doubles or four copies of particular values. For example, 5 appears four times 
in row 5 because 5 ∗ 2 = 10 ≡  0 mod 10, 5 ∗ 4 = 20 ≡  0 mod 10, 5 ∗ 6 = 30 ≡
 0 mod 10, and 5 ∗ 8 = 40 ≡  0 mod 10. 

 
These two facts explain why UPC, bank accounts, and other check digit systems use relatively 
prime numbers (even more complex systems like RSA use relatively prime numbers in the 
algorithm).  These cases always need an answer and always need a unique check digit to work 
and to check to make sure the product information is correct or the bank account number was 
entered correctly. 
 
In all our examples we solve an equation of the form: 𝑚𝑑 + 𝑐 =  0 mod 10 or rather  
𝑚𝑑 =  −𝑐 =  0 mod 10. Note that -c mod 10 can be any value between 0 and 9.  This means 
md mod 10 needs to have a solution for every value between 0 and 9 and d is any value. If m is 
not relatively prime to 10, then either there is no solution to this equation (say c is 7 and m is 2) 
or there are many solutions (say 𝑐 = 5 and 𝑚 = 5).   
 
These concepts are connected to advanced topics in mathematics like number theory, rings, 
fields, and abstract algebra.  Prime numbers and relatively prime numbers are found 
throughout mathematics, computer science, and security. 
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Extended Activity B: 

 
While we didn’t discuss multiplication of binary numbers in the module, we can still multiply 
values in binary.  There is a rote method for multiplying in base-ten; however, this rote method 
is difficult to do in binary.  We will consider the grouping method or a modified area model 
concept. 
 
In Section 3, we multiplied 16 and 31 using a tabular method.  We can also write out this 
multiplication in two ways:  

16 ∗ 31 =  (10 +  6) ∗ (30 + 1)  =  (300 +  10 + 180 + 6)  =  496 
or 

16 ∗ 31 =  (10 +  6) ∗ (31) =  (310 +  186) =  496. 
 
Note that the second version is not as intuitive because we do not have 6 times 31 as a known 
multiplication fact.  While a bit strange to see it in a decimal expansion, we can perform the 
above operations as follows: 
 

16 ∗ 31 =  (1 ∗ 101  +  6 ∗ 100) ∗ (3 ∗ 101 + 1 ∗ 100) 
=  3 ∗ 102  +  1 ∗ 101 + 18 ∗ 101 + 6 ∗ 100  

 
or 
 

16 ∗ 31 =  (1 ∗ 101  +  6 ∗ 100) ∗ (31) =  31 ∗ 101 + 186 ∗ 100  
 
Upon regrouping, we have: 

3 ∗ 102  +  1 ∗ 101 + 18 ∗ 101 + 6 ∗ 100  
=  3 ∗ 102  + 19 ∗ 101 + 6 ∗ 100  
=  3 ∗ 102  + (10 ∗ 101 + 9 ∗ 101) + 6 ∗ 100 
=  3 ∗ 102  + 1 ∗ 102 + 9 ∗ 101 + 6 ∗ 100 
=  4 ∗ 102  + 9 ∗ 101  + 6 ∗ 100 =  496 

 
or 
 

31 ∗ 101 + 186 ∗ 100 
= 31 ∗ 101 + (180 ∗ 100 + 6 ∗ 100) 
= 31 ∗ 101 + 18 ∗ 101 + 6 ∗ 100 
= 49 ∗ 101 + 6 ∗ 100 
= (40 ∗ 101 + 9 ∗ 101) + 6 ∗ 100 
= 4 ∗ 102 + 9 ∗ 101 + 6 ∗ 100 = 496 

 
Now, clearly the first method was more effective but the second will illuminate what happens 
in base-two. Let’s write both 16 and 31 in their binary expansions before we perform the 
multiplication. 
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16 ∗ 31 =  (10000)2 ∗ (11111)2 
=  (1 ∗ 24 +  0 ∗ 23 +  0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20) ∗ (1 ∗ 24 + 1 ∗ 23 +  1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20)  
 
While this expansion looks complicated, we can see that many terms will be zero.  That is a perk 
of binary expansion: every coefficient is either 0 or 1.  
 

16 ∗ 31 =  (10000)2 ∗ (11111)2 
=  (1 ∗ 24 +  0 ∗ 23 +  0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20) ∗ (1 ∗ 24 + 1 ∗ 23 +  1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20)  
=  (24) ∗ (1 ∗ 24 + 1 ∗ 23 +  1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20)= 496 
 
Really this last line just says (24) ∗ 31 = 496, which just says double 31 four times. This 
matches our tabular conclusion in Section 3.  We will see in the next example that we are only 
using the binary expansion of the first number. 
 
Now, let’s take consider more complicated examples, meaning some rows are not crossed out: 

 

Example 2 

20 13 

10 26 

5 52 

2 104 

1 208 

 
 
In Example 1, 19 ∗ 13, the 3rd and 4th rows are crossed out.  So we see that 

19 ∗ 13 = 13 + 26 + 208 = 247. 
Let’s interpret this result in binary:  

19 ∗ 13 = (24 + 21 + 20) ∗ (13) 
 
Looking at the 19, we want to make sense of the binary expansion from the table.  We will 
discuss this for any value m, but demonstrate the pattern with 19.  Suppose m was already 
written in base-two.  Asking whether m is even or odd is just asking whether m has a 20 term.  
If so, then keep that row.  Otherwise cross it out.  Notice that by keeping the row we are telling 
ourselves that we will have a 20 in the binary expansion.  This 20 will need to be multiplied to 
the other value, in this case, 13.  We add 13 to our total value because 13 = 20 ∗ 13 = 1 ∗ 13. 
  
Then we divide m by two and determine whether the new value is even or odd.  In base-two, 
dividing by two is merely a matter of subtracting 1 from every exponent:  

(24+21+20)

2
= 23 + 20 + 2−1. 

Since we made a rule of rounding down, the value here would be 23 + 20.  Again, the value is 
odd, so we should keep this term.  The value being odd says that we must have had a 21 term in 
m, because dividing by two and having a 20 term means you had a 21 in the first place.  So, we 

Example 1 

19 13 

9 26 

4 52 

2 104 

1 208 
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will need to multiply 2 times our value, here 13.  That is why we have a 26 in our total.  Another 
way to say this is that we needed to double 13 once because we have a 21 term. 
 
We continue this process of assessing whether the binary expansion of the number has a 0 
term or a 1 term at the 2𝑛 position by assessing even or odd values.  If the value exists in the 
binary expansion in position n, then we know it will be part of our total and that we will need 
the value doubled n times. 
 
 
 
 
 
 
 
 
 
 
 

Example 2 

20 13 

10 26 

5 52 

2 104 

1 208 

 
 
In Example 2, 20 ∗ 13, the 1st, 2nd, and 4th rows are crossed out. Then  

20 ∗ 13 = 52 + 208 = 260. 
Let’s interpret this result in binary:  

20 ∗ 13 = (24 + 22) ∗ (13). 
We can read this as needing 13 doubled 4 times and 13 doubled twice, 208 and 52 respectively.  
There is a tendency to want to say 4 times 13 and 2 times 13, but that is not correct because we 
are counting the number of times we double since is it 2 ∗ 2 ∗ 2 ∗ 2 ∗ 13, etc. 
 
 
 
 
 
 
 
 
 
 

n 2𝑛 
term 

m  

0 yes 19 20 ∗13 

1 yes 9 21 ∗13 

2 no 4 22 ∗13 

3 no 2 23 ∗13 

4 yes 1 24 ∗13 


